condition found tbRes List
MFrot, Magnetic Field Rotating: Click to Expand ⟱
Features:
Rotary Magnetic field can be generated by a spinning magnet or magnets. Or it can be implemented with 2 or more coils, power with a phase shift between them (90 deg for 2 coil implementation) (60deg for 3 coil implementation)
Targets affected are mostly the same as for Magnet fields
Main differences
- may enhance the EPR effect allowing targeting of drugs to cancer cells
- acts as wireless stirrer, especially on magnetic particles(inducing eddy currents in water media)
- research for use in nano surgery, and mechanical destruction of cancer cells
- continue to highlight ability to raise ROS in cancer cell and lower ROS in normal cells
- RMF may be responsible for Ca2+ distribution to pass across the plasma membrane(differental affected for cancer and normal cells)

Pathways:
- induce ROS production in cancer cells, while decreasing ROS in normal cells. Ca2+ is critical and the Ca2+ balance is increased in cancer cells while decreased in normal cells (example for wound healing)
- ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓">NF-kB, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, RhoA↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓,
- Others: PI3K↓, AKT↓, Wnt↓, AMPK, ERK↓, JNK,
- Synergies: < Others(review target notes), Neuroprotective, Cognitive,

- Selectivity: Cancer Cells vs Normal Cells


NF-kB, Nuclear factor kappa B: Click to Expand ⟱
Source: HalifaxProj(inhibit)
Type:
NF-kB signaling
Nuclear factor kappa B (NF-κB) is a transcription factor that plays a crucial role in regulating immune response, inflammation, cell proliferation, and survival.
NF-κB is often found to be constitutively active in many types of cancer cells. This persistent activation can promote tumorigenesis by enhancing cell survival, proliferation, and metastasis.


Scientific Papers found: Click to Expand⟱
204- MFrot,    Rotating magnetic field improved cognitive and memory impairments in a sporadic ad model of mice by regulating microglial polarization
- in-vivo, AD, NA
*NF-kB↓, RMF improves memory and cognitive impairments in a sporadic AD model, potentially by promoting the M1 to M2 transition of microglial polarization through inhibition of the NF-кB/MAPK signaling pathway.
*MAPK↓,
*TLR4↓,
*memory↑,
*cognitive↑,
*TGF-β1↑, RMF treatment promoted the expression of anti-inflammatory cytokines (TGF-β1, Arg-1, IL-4, IL-10)
*ARG↑, Arg-1
*IL4↑,
*IL10↑,
*IL6↓,
*IL1↓, IL-1β
*TNF-α↓,
*iNOS↓,
*ROS↓, in mice brain
*NO↓, in serum
*MyD88↓,
*p‑IKKα↓, phosphorylated IKKα/β, IкBα, NF-кB p65, JNK, p38,
*p‑IκB↓, IкBα
*p‑p65↓,
*p‑JNK↓,
*p‑p38↓,
*ERK↓,
*neuroP↑, RMF treatment resulted in reduced aluminum deposition in the brains of AD mice.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:

Total Targets: 0

Results for Effect on Normal Cells:
ARG↑,1,   cognitive↑,1,   ERK↓,1,   p‑IKKα↓,1,   IL1↓,1,   IL10↑,1,   IL4↑,1,   IL6↓,1,   iNOS↓,1,   p‑IκB↓,1,   p‑JNK↓,1,   MAPK↓,1,   memory↑,1,   MyD88↓,1,   neuroP↑,1,   NF-kB↓,1,   NO↓,1,   p‑p38↓,1,   p‑p65↓,1,   ROS↓,1,   TGF-β1↑,1,   TLR4↓,1,   TNF-α↓,1,  
Total Targets: 23

Scientific Paper Hit Count for: NF-kB, Nuclear factor kappa B
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:192  Target#:214  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page