condition found
Features: |
Rotary Magnetic field can be generated by a spinning magnet or magnets. Or it can be implemented with 2 or more coils, power with a phase shift between them (90 deg for 2 coil implementation) (60deg for 3 coil implementation) Targets affected are mostly the same as for Magnet fields Main differences - may enhance the EPR effect allowing targeting of drugs to cancer cells - acts as wireless stirrer, especially on magnetic particles(inducing eddy currents in water media) - research for use in nano surgery, and mechanical destruction of cancer cells - continue to highlight ability to raise ROS in cancer cell and lower ROS in normal cells - RMF may be responsible for Ca2+ distribution to pass across the plasma membrane(differental affected for cancer and normal cells) Pathways: - induce ROS production in cancer cells, while decreasing ROS in normal cells. Ca2+ is critical and the Ca2+ balance is increased in cancer cells while decreased in normal cells (example for wound healing) - ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, - inhibit Growth/Metastases : TumMeta↓, TumCG↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, RhoA↓, NF-κB↓, TGF-β↓, ERK↓ - cause Cell cycle arrest : TumCCA↑, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, - Others: PI3K↓, AKT↓, Wnt↓, AMPK, ERK↓, JNK, - Synergies: < Others(review target notes), Neuroprotective, Cognitive, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Poly (ADP-ribose) polymerase (PARP) cleavage is a hallmark of caspase activation.
PARP (Poly (ADP-ribose) polymerase) is a family of proteins involved in a variety of cellular processes, including DNA repair, genomic stability, and programmed cell death. PARP enzymes play a crucial role in repairing single-strand breaks in DNA. PARP has gained significant attention, particularly in the treatment of certain types of tumors, such as those with BRCA1 or BRCA2 mutations. These mutations impair the cell's ability to repair double-strand breaks in DNA through homologous recombination. Cancer cells with these mutations can become reliant on PARP for survival, making them particularly sensitive to PARP inhibitors. PARP inhibitors, such as olaparib, rucaparib, and niraparib, have been developed as targeted therapies for cancers associated with BRCA mutations. PARP Family: The poly (ADP-ribose) polymerases (PARPs) are a family of enzymes involved in a number of cellular processes, including DNA repair, genomic stability, and programmed cell death. PARP1 is the predominant family member responsible for detecting DNA strand breaks and initiating repair processes, especially through base excision repair (BER). PARP1 Overexpression: In several cancer types—including breast, ovarian, prostate, and lung cancers—elevated PARP1 expression and/or activity has been reported. High PARP1 expression in certain cancers has been associated with aggressive tumor behavior and resistance to therapies (especially those that induce DNA damage). Increased PARP1 activity may correlate with poorer overall survival in tumors that rely on DNA repair for survival. |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:192 Target#:239 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid