Features: |
Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical. Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways. – Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein. – Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects. • Effective Dosage in Studies – Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses. – Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary. -IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models) -IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type - In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg - very effective AChE inhibitor (Alzheimers) - Berberine may enhance the effects of blood-thinning medications like warfarin and aspirin. -Note half-life reports vary 2.5-90hrs?. -low solubility of apigenin in water : BioAv Pathways: - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ - Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK. - inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
AChE is an enzyme that rapidly hydrolyzes the neurotransmitter acetylcholine into choline and acetate, terminating cholinergic signals. - In some cancers, studies have reported reduced AChE activity, which may contribute to an accumulation of acetylcholine. - Lower levels or loss of AChE expression/activity have been associated with more aggressive tumor behavior and poor prognosis, possibly due to unchecked cholinergic signaling. For AD (Alzheimer's), AChE inhibitors are used, to allow ACh, and ChAT to increase along with acetyl-CoA -Natural AChE inhibitors: Ferulic Acid, Caffeic Acid, Rosmarinic Acid, Sage -AChE inhibitors only temporarily relieve some of the disease’s cognitive symptoms and do not stop the patient’s cognitive loss -adverse effects such as disorientation, falls, dizziness, and fatigue may occur with these medications and should be used only as recommended - Natural AChE inhibitors paper |
3754- | BBR, | CUR, | EGCG, | Hup, | Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: A review |
3749- | BBR, | Anti-Alzheimer and Antioxidant Activities of Coptidis Rhizoma Alkaloids |
- | Review, | AD, | NA |
3684- | BBR, | Neuroprotective effects of berberine in animal models of Alzheimer’s disease: a systematic review of pre-clinical studies |
- | Review, | AD, | NA |
3683- | BBR, | Characterization of the anti-AChE potential and alkaloids in Rhizoma Coptidis from different Coptis species combined with spectrum-effect relationship and molecular docking |
- | NA, | AD, | NA |
3682- | BBR, | Berberine Improves Cognitive Impairment by Simultaneously Impacting Cerebral Blood Flow and β-Amyloid Accumulation in an APP/tau/PS1 Mouse Model of Alzheimer’s Disease |
- | in-vitro, | AD, | NA |
3677- | BBR, | Berberine: A Potential Multipotent Natural Product to Combat Alzheimer’s Disease |
- | Review, | AD, | NA |
3633- | BBR, | LT, | Croc, | QC, | Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer's Disease Therapy |
- | Review, | AD, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:41 Target#:1329 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid