condition found tbRes List
BBR, Berberine: Click to Expand ⟱
Features:
Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical.
Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways.

– Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein.
– Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects.

• Effective Dosage in Studies
– Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses.
– Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary.

-IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models)
-IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type
- In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg


-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK.
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells



selectivity, selectivity: Click to Expand ⟱
Source:
Type:
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues.

Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance

Factors that affect selectivity:
1. Ability of Cancer cells to preferentially absorb a product/drug
-EPR-enhanced permeability and retention of cancer cells
-nanoparticle formations/carriers may target cancer cells over normal cells
-Liposomal formations. Also negatively/positively charged affects absorbtion

2. Product/drug effect may be different for normal vs cancer cells
- hypoxia
- transition metal content levels (iron/copper) change probability of fenton reaction.
- pH levels
- antiOxidant levels and defense levels

3. Bio-availability


Scientific Papers found: Click to Expand⟱
2686- BBR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Nor, NA
Inflam↓, BBR has documented to have anti-diabetic, anti-inflammatory and anti-microbial (both anti-bacterial and anti-fungal) properties.
IL6↓, BBRs can inhibit IL-6, TNF-alpha, monocyte chemo-attractant protein 1 (MCP1) and COX-2 production and expression.
MCP1↓,
COX2↓,
PGE2↓, BBRs can also effect prostaglandin E2 (PGE2)
MMP2↓, and decrease the expression of key genes involved in metastasis including: MMP2 and MMP9.
MMP9↓,
DNAdam↑, BBR induces double strand DNA breaks and has similar effects as ionizing radiation
eff↝, In some cell types, this response has been reported to be TP53-dependent
Telomerase↓, This positively-charged nitrogen may result in the strong complex formations between BBR and nucleic acids and induce telomerase inhibition and topoisomerase poisoning
Bcl-2↓, BBR have been shown to suppress BCL-2 and expression of other genes by interacting with the TATA-binding protein and the TATA-box in certain gene promoter regions
AMPK↑, BBR has been shown in some studies to localize to the mitochondria and inhibit the electron transport chain and activate AMPK.
ROS↑, targeting the activity of mTOR/S6 and the generation of ROS
MMP↓, BBR has been shown to decrease mitochondrial membrane potential and intracellular ATP levels.
ATP↓,
p‑mTORC1↓, BBR induces AMPK activation and inhibits mTORC1 phosphorylation by suppressing phosphorylation of S6K at Thr 389 and S6 at Ser 240/244
p‑S6K↓,
ERK↓, BBR also suppresses ERK activation in MIA-PaCa-2 cells in response to fetal bovine serum, insulin or neurotensin stimulation
PI3K↓, Activation of AMPK is associated with inhibition of the PI3K/PTEN/Akt/mTORC1 and Raf/MEK/ERK pathways which are associated with cellular proliferation.
PTEN↑, RES was determined to upregulate phosphatase and tensin homolog (PTEN) expression and decrease the expression of activated Akt. In HCT116 cells, PTEN inhibits Akt signaling and proliferation.
Akt↓,
Raf↓,
MEK↓,
Dose↓, The effects of low doses of BBR (300 nM) on MIA-PaCa-2 cells were determined to be dependent on AMPK as knockdown of the alpha1 and alpha2 catalytic subunits of AMPK prevented the inhibitory effects of BBR on mTORC1 and ERK activities and DNA synthes
Dose↑, In contrast, higher doses of BBR inhibited mTORC1 and ERK activities and DNA synthesis by AMPK-independent mechanisms [223,224].
selectivity↑, BBR has been shown to have minimal effects on “normal cells” but has anti-proliferative effects on cancer cells (e.g., breast, liver, CRC cells) [225–227].
TumCCA↑, BBR induces G1 phase arrest in pancreatic cancer cells, while other drugs such as gemcitabine induce S-phase arrest
eff↑, BBR was determined to enhance the effects of epirubicin (EPI) on T24 bladder cancer cells
EGFR↓, In some glioblastoma cells, BBR has been shown to inhibit EGFR signaling by suppression of the Raf/MEK/ERK pathway but not AKT signaling
Glycolysis↓, accompanied by impaired glycolytic capacity.
Dose?, The IC50 for BBR was determined to be 134 micrograms/ml.
p27↑, Increased p27Kip1 and decreased CDK2, CDK4, Cyclin D and Cyclin E were observed.
CDK2↓,
CDK4↓,
cycD1↓,
cycE↓,
Bax:Bcl2↑, Increased BAX/BCL2 ratio was observed.
Casp3↑, The mitochondrial membrane potential was disrupted and activated caspase 3 and caspases 9 were observed
Casp9↑,
VEGFR2↓, BBR treatment decreased VEGFR, Akt and ERK1,2 activation and the expression of MMP2 and MMP9 [235].
ChemoSen↑, BBR has been shown to increase the anti-tumor effects of tamoxifen (TAM) in both drug-sensitive MCF-7 and drug-resistant MCF-7/TAM cells.
eff↑, The combination of BBR and CUR has been shown to be effective in suppressing the growth of certain breast cancer cell lines.
eff↑, BBR has been shown to synergize with the HSP-90 inhibitor NVP-AUY922 in inducing death of human CRC.
PGE2↓, BBR inhibits COX2 and PEG2 in CRC.
JAK2↓, BBR prevented the invasion and metastasis of CRC cells via inhibiting the COX2/PGE2 and JAK2/STAT3 signaling pathways.
STAT3↓,
CXCR4↓, BBR has been observed to inhibit the expression of the chemokine receptors (CXCR4 and CCR7) at the mRNA level in esophageal cancer cells.
CCR7↓,
uPA↓, BBR has also been shown to induce plasminogen activator inhibitor-1 (PAI-1) and suppress uPA in HCC cells which suppressed their invasiveness and motility.
CSCs↓, BBR has been shown to inhibit stemness, EMT and induce neuronal differentiation in neuroblastoma cells. BBR inhibited the expression of many genes associated with neuronal differentiation
EMT↓,
Diff↓,
CD133↓, BBR also suppressed the expression of many genes associated with cancer stemness such as beta-catenin, CD133, NESTIN, N-MYC, NOTCH and SOX2
Nestin↓,
n-MYC↓,
NOTCH↓,
SOX2↓,
Hif1a↓, BBR inhibited HIF-1alpha and VEGF expression in prostate cancer cells and increased their radio-sensitivity in in vitro as well as in animal studies [290].
VEGF↓,
RadioS↑,

2707- BBR,    Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway
- in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7
GLUT1↓, BBR downregulated the protein expression levels of GLUT1, maintained the cytoplasmic internalization of GLUT1
Akt↓, and suppressed the Akt/mTOR signaling pathway in both HepG2 and MCF7 cell lines
mTOR↓,
ATP↓, BBR-induced decrease in ATP synthesis, glucose uptake, GLUT1 expression and cell proliferation
GlucoseCon↓,
TumCP↓,
Warburg↓, antineoplastic effect of BBR may involve the reversal of the Warburg effect
selectivity↑, The results demonstrated that the colony-forming capacity was slightly inhibited in Hs 578Bst normal breast cells following BBR treatment, but significantly inhibited in both cancer cell lines.
TumCCA↑, BBR effectively induced cell cycle arrest at the G2M phase
Glycolysis↓, Notably, our preliminary experiments identified that BBR strongly decreased the glucose uptake ability of HepG2 and MCF7 cell lines, therefore, it was hypothesized that BBR may interfere with tumor progression by inhibiting glycolysis.

2700- BBR,    Cell-specific pattern of berberine pleiotropic effects on different human cell lines
- in-vitro, GBM, U343 - in-vitro, GBM, MIA PaCa-2 - in-vitro, Nor, HDFa
selectivity↑, berberine differentially affects cell viability, displaying a higher cytotoxicity on the two cancer cell lines than on HDF
TumCCA↑, Berberine also affects cell cycle progression, senescence, caspase-3 activity, autophagy and migration in a cell-specific manner.
Casp3↑, it increases caspase-3 activity and impairs migration/invasion.
TumCI↓,
TumCMig↓,
N-cadherin?,
DNMT1↑, DNMT1 was also upregulated in U343 cells (4-fold) after 50 μM berberine for 48 hours and in MIA PaCa-2 cells after treatment with both 10 μM and 50 μM berberine for 48 hours (5-fold and 15-fold, respectively).

2023- BBR,    Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor
- in-vitro, Colon, NA - in-vitro, Nor, YAMC
TumCD↑, Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells.
*toxicity↓, In contrast, YAMC(normal) cells were not sensitive to berberine-induced cell death. less cytotoxic effects on normal colon epithelial cells.
selectivity↑, see figure 2
ROS↑, berberine-stimulated ROS production
*ROS∅, ROS production in a concentration-dependent manner only in IMCE cells, but not in YAMC cells. In YAMC cells, berberine did not induce ROS production
MMP↓, berberine induced mitochondrial depolarization in a concentration-dependent manner in IMCE cells, but not in YAMC cells
*MMP∅, but not in YAMC cells
PARP↑, Berberine Activation of PARP
BioAv↝, absorption of berberine by YAMC is lower than that by IMCE cells

2022- BBR,  GoldNP,  Rad,    Berberine-loaded Janus gold mesoporous silica nanocarriers for chemo/radio/photothermal therapy of liver cancer and radiation-induced injury inhibition
- in-vitro, Liver, SMMC-7721 cell - in-vitro, Nor, HL7702
*toxicity↓, Berberine (Ber), an isoquinolin alkaloid with low toxicity and protective effects against radiotherapy
radioP↑,
BioAv↑, We preloaded Ber into folic acid targeting Janus gold mesoporous silica nanocarriers (FA-JGMSNs) for overcoming the poor bioavailability of Ber.
AntiTum↑, highly efficient anti-tumor effect, good biosafety
selectivity↑, as well as the effective protection of normal tissue of this nanoplatform.
eff↑, These selective distributions of Ber in cancer cells and normal cells originated from selective endocytosis as well as pH-responsive drug release, which were conducive to achieving an improved therapeutic effect of Ber.
chemoP↑, Notably, chemo/radio/photothermal therapeutics didn’t cause the amounts of deaths of HL-7702 cells, indicating an excellent biosafety of the triple-model therapy.

2021- BBR,    Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways
- Review, NA, NA
*antiOx?, Berberine has been noted as a potential therapeutic candidate for liver fibrosis due to its antioxidant and anti-inflammatory activities
*Inflam↓,
Apoptosis↑, Apoptosis induced by berberine in liver cancer cells caused cell cycle arrest at the M/G1 phase and increased the Bax expression
TumCCA↑,
BAX↑,
eff↑, mixture of curcumin and berberine effectively decreases growth in breast cancer cell lines
VEGF↓, berberine also prevented the expression of VEGF
PI3K↓, berberine plays an important role in cancer management through inhibition of the PI3K/AKT/mTOR pathway
Akt↓,
mTOR↓,
Telomerase↓, Berberine decreased the telomerase activity and level of the colorectal cancer cell line,
β-catenin/ZEB1↓, berberine and its derivatives have the ability to inhibit β-catenin/Wnt signaling in tumorigenesis
Wnt↓,
EGFR↓, berberine treatment decreased cell proliferation and epidermal growth factor receptor expression levels in the xenograft model.
AP-1↓, Berberine efficiently targets both the host and the viral factors accountable for cervical cancer development via inhibition of activating protein-1
NF-kB↓, berberine inhibited lung cancer cell growth by concurrently targeting NF-κB/COX-2, PI3K/AKT, and cytochrome-c/caspase signaling pathways
COX2↑,
NRF2↓, Berberine suppresses the Nrf2 signaling-related protein expression in HepG2 and Huh7 cells,
RadioS↑, suggesting that berberine supports radiosensitivity through suppressing the Nrf2 signaling pathway in hepatocellular carcinoma cells
STAT3↓, regulating the JAK–STAT3 signaling pathway
ERK↓, berberine prevented the metastatic potential of melanoma cells via a reduction in ERK activity, and the protein levels of cyclooxygenase-2 by a berberine-caused AMPK activation
AR↓, Berberine reduced the androgen receptor transcriptional activity
ROS↑, In a study on renal cancer, berberine raised the levels of autophagy and reactive oxygen species in human renal tubular epithelial cells derived from the normal kidney HK-2 cell line, in addition to human cell lines ACHN and 786-O cell line.
eff↑, berberine showed a greater apoptotic effect than gemcitabine in cancer cells
selectivity↑, After berberine treatment, it was noticed that berberine showed privileged selectivity towards cancer cells as compared to normal ones.
selectivity↑, expression of caspase-1 and its downstream target Interleukin-1β (IL-1β) was higher in osteosarcoma cells as compared to normal cells
BioAv↓, several studies have been undertaken to overcome the difficulties of low absorption and poor bioavailability through nanotechnology-based strategies.
DNMT1↓, In human multiple melanoma cell U266, berberine can inhibit the expression of DNMT1 and DNMT3B, which leads to hypomethylation of TP53 by altering the DNA methylation level and the p53-dependent signal pathway
cMyc↓, Moreover, berberine suppresses SLC1A5, Na+ dependent transporter expression through preventing c-Myc


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
Akt↓,3,   AMPK↑,1,   AntiTum↑,1,   AP-1↓,1,   Apoptosis↑,1,   AR↓,1,   ATP↓,2,   BAX↑,1,   Bax:Bcl2↑,1,   Bcl-2↓,1,   BioAv↓,1,   BioAv↑,1,   BioAv↝,1,   Casp3↑,2,   Casp9↑,1,   CCR7↓,1,   CD133↓,1,   CDK2↓,1,   CDK4↓,1,   chemoP↑,1,   ChemoSen↑,1,   cMyc↓,1,   COX2↓,1,   COX2↑,1,   CSCs↓,1,   CXCR4↓,1,   cycD1↓,1,   cycE↓,1,   Diff↓,1,   DNAdam↑,1,   DNMT1↓,1,   DNMT1↑,1,   Dose?,1,   Dose↓,1,   Dose↑,1,   eff↑,6,   eff↝,1,   EGFR↓,2,   EMT↓,1,   ERK↓,2,   GlucoseCon↓,1,   GLUT1↓,1,   Glycolysis↓,2,   Hif1a↓,1,   IL6↓,1,   Inflam↓,1,   JAK2↓,1,   MCP1↓,1,   MEK↓,1,   MMP↓,2,   MMP2↓,1,   MMP9↓,1,   mTOR↓,2,   p‑mTORC1↓,1,   N-cadherin?,1,   n-MYC↓,1,   Nestin↓,1,   NF-kB↓,1,   NOTCH↓,1,   NRF2↓,1,   p27↑,1,   PARP↑,1,   PGE2↓,2,   PI3K↓,2,   PTEN↑,1,   radioP↑,1,   RadioS↑,2,   Raf↓,1,   ROS↑,3,   p‑S6K↓,1,   selectivity↑,7,   SOX2↓,1,   STAT3↓,2,   Telomerase↓,2,   TumCCA↑,4,   TumCD↑,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,1,   uPA↓,1,   VEGF↓,2,   VEGFR2↓,1,   Warburg↓,1,   Wnt↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 85

Results for Effect on Normal Cells:
antiOx?,1,   Inflam↓,1,   MMP∅,1,   ROS∅,1,   toxicity↓,2,  
Total Targets: 5

Scientific Paper Hit Count for: selectivity, selectivity
6 Berberine
1 Gold NanoParticles
1 Radiotherapy/Radiation
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:41  Target#:1110  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page