condition found
Features: |
Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical. Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways. – Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein. – Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects. • Effective Dosage in Studies – Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses. – Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary. -IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models) -IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type - In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg -Note half-life reports vary 2.5-90hrs?. -low solubility of apigenin in water : BioAv Pathways: - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ - Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK. - inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: effect |
The Warburg effect is a metabolic phenomenon in which cancer cells preferentially use glycolysis for energy production, even in the presence of oxygen. Targeting the pathways involved in the Warburg effect is a promising strategy for cancer treatment. The Warburg effect is always accompanied by a hypoxic condition, and activation of HIF-1a contributes to the Warburg effect through coordinated upregulation of glycolysis and downregulation of oxidative phosphorylation. Warburg effect (GLUT1, LDHA, HK2, and PKM2). Here are some of the key pathways and potential targets: Note: use database Filter to find inhibitors: Ex pick target HIF1α, and effect direction ↓ 1.Glycolysis Inhibitors:(2-DG, 3-BP) -HK2 Inhibitors: such as 2-deoxyglucose, can reduce glycolysis -PFK1 Inhibitors: such as PFK-158, can reduce glycolysis -PFKFB Inhibitors: -PKM2 Inhibitors: (Shikonin) -Can reduce glycolysis -LDH Inhibitors: (Gossypol, FX11) -Reducing the conversion of pyruvate to lactate. -Inhibiting the production of ATP and NADH. -GLUT1 Inhibitors: (phloretin, WZB117) -A key transporter involved in glucose uptake. -GLUT3 Inhibitors: -PDK1 Inhibitors: (dichloroacetate) - A key enzyme involved in the regulation of glycolysis. 2.Gluconeogenesis pathway: -FBP1 Activators: can increase gluconeogenesis -PEPCK1 Inhibitors: can reduce gluconeogenesis 3.Pentose phosphate pathway: -G6PD Inhibitors: can reduce the pentose phosphate pathway 4.Mitochondrial metabolism: -MPC1 Inhibitors: can reduce mitochondrial metabolism and inhibit cancer -SDH Inhibitors: can reduce mitochondrial metabolism and inhibit cancer cell growth. 5.Hypoxia-inducible factor 1 alpha (HIF1α) pathway: -HIF1α inhibitors: (PX-478,Shikonin) -Reduce expression of glycolytic genes and inhibit cancer cell growth. 6.AMP-activated protein kinase (AMPK) pathway: -AMPK activators: (metformin,AICAR,berberine) -Can increase AMPK activity and inhibit cancer cell growth. 7.mTOR pathway: -mTOR inhibitors:(rapamycin,everolimus) -Can reduce mTOR activity and inhibit cancer cell growth. |
2710- | BBR,  |   | Berberine inhibits the Warburg effect through TET3/miR-145/HK2 pathways in ovarian cancer cells |
- | in-vitro, | Ovarian, | SKOV3 |
2707- | BBR,  |   | Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway |
- | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:41 Target#:947 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid