condition found tbRes List
BBR, Berberine: Click to Expand ⟱
Features:
Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical.
Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways.

– Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein.
– Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects.

• Effective Dosage in Studies
– Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses.
– Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary.

-IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models)
-IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type
- In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg


-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK.
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells



neuroP, neuroprotective: Click to Expand ⟱
Source:
Type:
Neuroprotective refers to the ability of a substance, intervention, or strategy to preserve the structure and function of nerve cells (neurons) against injury or degeneration.
-While cancer and neurodegenerative processes might seem distinct, there is significant overlap in terms of treatment-related neurotoxicity, shared molecular mechanisms, and the potential for therapies that provide neuroprotection during cancer treatment.


Scientific Papers found: Click to Expand⟱
2689- BBR,    Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells
- in-vitro, Nor, PC12 - in-vitro, AD, NA - in-vitro, Stroke, NA
*ROS↓, In both cell lines, pretreatment with berberine (especially at low concentrations) significantly decreased ROS generation, lipid peroxidation, and DNA fragmentation, while improving glutathione content and SOD activity in glutamate-injured cells.
*lipid-P↓,
*DNAdam↓, Berberine significantly diminished glutamate-induced DNA fragmentation
*GSH↑,
*SOD↑,
*eff↑, This is relevant to berberine treatment in neurodegenerative disorders, such as dementia (Alzheimer’s disease), seizures, and stroke.
*cl‑Casp3↓, Berberine significantly decreased cleaved caspase-3 and bax/bcl-2 expressions in the glutamate-injured cells
*BAX↓,
*neuroP↑, the current study demonstrated that berberine exerts neuroprotective effects against glutamate-induced N2a and PC12 cytotoxicity via antioxidant and anti-apoptotic mechanisms
*Dose↝, the protective effect of berberine was more significant at lower concentrations and decreased with increasing concentration.
*Ca+2↓, Nadjafi et al demonstrated that berberine protects OLN-93 oligodendrocytes against ischemic-induced cell death by attenuating the intracellular Ca2+ overload similar to the NMDA or the AMPA/kainate receptors antagonists

2679- BBR,    Berberine Improves Behavioral and Cognitive Deficits in a Mouse Model of Alzheimer’s Disease via Regulation of β-Amyloid Production and Endoplasmic Reticulum Stress
- in-vivo, AD, NA
*cognitive↑, berberine could improve cognitive deficits in the triple-transgenic mouse model of Alzheimer’s disease (3 × Tg AD) mice.
PERK↓, berberine treatment may inhibit PERK/eIF2α signaling-mediated BACE1 translation, thus reducing Aβ production and resultant neuronal apoptosis
*eIF2α↓,
*neuroP↑, berberine may have neuroprotective effects, via attenuation of ER stress and oxidative stress.
*ER Stress↓,
*ROS↓,

2678- BBR,    Berberine as a Potential Agent for the Treatment of Colorectal Cancer
- Review, CRC, NA
*Inflam↓, BBR exerts remarkable anti-inflammatory (94–96), antiviral (97), antioxidant (98), antidiabetic (99), immunosuppressive (100), cardiovascular (101, 102), and neuroprotective (103) activities.
*antiOx↑,
*cardioP↑,
*neuroP↑,
TumCCA↑, BBR could induce G1 cycle arrest in A549 lung cancer cells by decreasing the levels of cyclin D1 and cyclin E1
cycD1↓,
cycE↓,
CDC2↓, BBR also induced G1 cycle arrest by inhibiting cyclin B1 expression and CDC2 kinase in some cancer cells
AMPK↝, BBR has been suggested to induce autophagy in glioblastoma by targeting the AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR)/ULK1 pathway
mTOR↝,
Casp8↑, BBR has been revealed to stimulate apoptosis in leukemia by upregulation of caspase-8 and caspase-9
Casp9↑,
Cyt‑c↑, in skin squamous cell carcinoma A431 cells by increasing cytochrome C levels
TumCMig↓, BBR has been confirmed to inhibit cell migration and invasion by inhibiting the expression of epithelial–mesenchymal transition (EMT)
TumCI↓,
EMT↓,
MMPs↓, metastasis-related proteins, such as matrix metalloproteinases (MMPs) and E-cadherin,
E-cadherin↓,
Telomerase↓, BBR has shown antitumor effects by interacting with microRNAs (125) and inhibiting telomerase activity
*toxicity↓, Numerous studies have revealed that BBR is a safe and effective treatment for CRC
GRP78/BiP↓, Downregulates GRP78
EGFR↓, Downregulates EGFR
CDK4↓, downregulates CDK4, TERT, and TERC
COX2↓, Reduces levels of COX-2/PGE2, phosphorylation of JAK2 and STAT3, and expression of MMP-2/-9.
PGE2↓,
p‑JAK2↓,
p‑STAT3↓,
MMP2↓,
MMP9↓,
GutMicro↑, BBR can inhibit tumor growth through meditation of the intestinal flora and mucosal barrier, and generally and ultimately improve weight loss. BBR has been reported to modulate the composition of intestinal flora and significantly reduce flora divers
eff↝, BBR can regulate the activity of P-glycoprotein (P-gp), and potential drug-drug interactions (DDIs) are observed when BBR is coadministered with P-gp substrates
*BioAv↓, the efficiency of BBR is limited by its low bioavailability due to its poor absorption rate in the gut, low solubility in water, and fast metabolism. Studies have shown that the oral bioavailability of BBR is 0.68% in rats
BioAv↑, combining it with p-gp inhibitors (such as tariquidar and tetrandrine) (196, 198), and modification to berberine organic acid salts (BOAs)

2673- BBR,    Therapeutic potential and recent delivery systems of berberine: A wonder molecule
- Review, Var, NA
*BioAv↓, clinical use of berberine has been limited due to its poor intestinal absorption, low bioavailability and limited penetration.
*Half-Life↓, t1/2, Cmax and AUC observed in healthy human male volunteers after single dose administration of 300 mg orally and their values have been reported to be 0.87 ± 0.03 h, 394.7 ± 155.4 µg/L and 2799.0 ± 1128.5 µg/L respectively
*neuroP↑, neuroprotective action have been investigated determining enhanced blood brain barrier (BBB) penetrability
BBB↑,
toxicity↓, These also dole out in low cost, seldom side effects and easy availability.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
AMPK↝,1,   BBB↑,1,   BioAv↑,1,   Casp8↑,1,   Casp9↑,1,   CDC2↓,1,   CDK4↓,1,   COX2↓,1,   cycD1↓,1,   cycE↓,1,   Cyt‑c↑,1,   E-cadherin↓,1,   eff↝,1,   EGFR↓,1,   EMT↓,1,   GRP78/BiP↓,1,   GutMicro↑,1,   p‑JAK2↓,1,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   mTOR↝,1,   PERK↓,1,   PGE2↓,1,   p‑STAT3↓,1,   Telomerase↓,1,   toxicity↓,1,   TumCCA↑,1,   TumCI↓,1,   TumCMig↓,1,  
Total Targets: 30

Results for Effect on Normal Cells:
antiOx↑,1,   BAX↓,1,   BioAv↓,2,   Ca+2↓,1,   cardioP↑,1,   cl‑Casp3↓,1,   cognitive↑,1,   DNAdam↓,1,   Dose↝,1,   eff↑,1,   eIF2α↓,1,   ER Stress↓,1,   GSH↑,1,   Half-Life↓,1,   Inflam↓,1,   lipid-P↓,1,   neuroP↑,4,   ROS↓,2,   SOD↑,1,   toxicity↓,1,  
Total Targets: 20

Scientific Paper Hit Count for: neuroP, neuroprotective
4 Berberine
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:41  Target#:1105  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page