condition found tbRes List
BBR, Berberine: Click to Expand ⟱
Features:
Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical.
Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways.

– Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein.
– Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects.

• Effective Dosage in Studies
– Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses.
– Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary.

-IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models)
-IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type
- In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg


-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK.
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells



JNK, c-Jun N-terminal kinase (JNK): Click to Expand ⟱
Source:
Type:
JNK acts synergistically with NF-κB, JAK/STAT, and other signaling molecules to exert a survival function. Janus signaling promotes cancer cell survival.
JNK, or c-Jun N-terminal kinase, is a member of the mitogen-activated protein kinase (MAPK) family. It plays a crucial role in various cellular processes, including cell proliferation, differentiation, and apoptosis (programmed cell death). JNK is activated in response to various stress signals, such as UV radiation, oxidative stress, and inflammatory cytokines.
JNK activation can promote apoptosis in cancer cells, acting as a tumor suppressor. However, in other contexts, it can promote cell survival and proliferation, contributing to tumor progression.

JNK is often unregulated in cancers, leading to increased cancer cell proliferation, survival, and resistance to apoptosis. This activation is typically associated with poor prognosis and aggressive tumor behavior.


Scientific Papers found: Click to Expand⟱
2690- BBR,    Berberine Differentially Modulates the Activities of ERK, p38 MAPK, and JNK to Suppress Th17 and Th1 T Cell Differentiation in Type 1 Diabetic Mice
- in-vivo, Diabetic, NA
*Inflam↓, Recent studies suggested that berberine has many beneficial biological effects, including anti-inflammation.
*Th17↓, Here we reported that 2 weeks of oral administration of berberine prevented the progression of type 1 diabetes in half of the NOD mice and decreased Th17 and Th1 cytokine secretion.
*Th1 response↓,
*ERK↑, berberine inhibited Th17 differentiation by activating ERK1/2 and inhibited Th1 differentiation by inhibiting p38 MAPK and JNK activation.
*p38↓,
*JNK↓,
*STAT1↓, Berberine down-regulated the activity of STAT1 and STAT4 through the suppression of p38 MAPK and JNK activation,
*STAT4↓,
*MAPK↓,

2683- BBR,    Berberine reduces endoplasmic reticulum stress and improves insulin signal transduction in Hep G2 cells
- in-vitro, Liver, HepG2
JNK↓, while the activation of JNK was blocked
p‑PERK↓, phosphorylation both on PERK and eIF2α were inhibited in cells pretreated with berberine.
p‑eIF2α↓,
*ER Stress↓, antidiabetic effect of berberine in Hep G2 cells maybe related to attenuation of ER stress

2677- BBR,    Liposome-Encapsulated Berberine Alleviates Liver Injury in Type 2 Diabetes via Promoting AMPK/mTOR-Mediated Autophagy and Reducing ER Stress: Morphometric and Immunohistochemical Scoring
- in-vivo, Diabetic, NA
*hepatoP↑, berberine (Lip-BBR) to aid in ameliorating hepatic damage and steatosis, insulin homeostasis, and regulating lipid metabolism in type 2 diabetes (T2DM)
*LC3II↑, Lip-BBR treatment promoted autophagy via the activation of LC3-II and Bclin-1 proteins and activated the AMPK/mTOR pathway in the liver tissue of T2DM rats.
*Beclin-1↑,
*AMPK↑,
*mTOR↑,
*ER Stress↓, It decreased the endoplasmic reticulum stress by limiting the CHOP, JNK expression, oxidative stress, and inflammation.
*CHOP↓,
*JNK↓,
*ROS↓,
*Inflam↓,
*BG↓, Oral supplementation of diabetic rats either by Lip-BBR or Vild, 10 mg/kg of each, significantly (p < 0.001) lowered the blood glucose levels of tested diabetic rats compared to the diabetic group.
*SOD↑, when the diabetic rats received Lip-BBR, the decrements were less pronounced compared to the diabetic group by 1.16 fold, 2.52 fold, and 67.57% for SOD, GPX, and CAT, respectively.
*GPx↑,
*Catalase↑,
*IL10↑, Treatment of the diabetic rats with Lip-BBR significantly (p < 0.001) elevated serum IL-10 levels by 37.01% compared with diabetic rats.
*IL6↓, Oral supplementation of Lip-BBR could markedly (p < 0.0001) reduce the elevated serum levels of IL-6 and TNF-α when it is used as a single treatment by 55.83% and 49.54%,
*TNF-α↓,
*ALAT↓, ALT, AST, and ALP in the diabetic group were significantly higher (p < 0.0001) by 88.95%, 81.64%, and 1.8 fold, respectively, compared with those in the control group, but this was reversed by the treatment with Lip-BBR
*AST↓,
*ALP↓,

1386- BBR,    Berberine-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓,
ROS↑,
JNK↑,
MMP↓,
Bcl-2↓,
BAX↑,
Cyt‑c↑, increased the release of cytochrome c
AIF↝,

1379- BBR,    Berberine derivative DCZ0358 induce oxidative damage by ROS-mediated JNK signaling in DLBCL cells
- in-vitro, lymphoma, NA
TumCP↓,
CDK4↓,
CDK6↓,
cycD1↓,
TumCCA↑, G0/G1 phase
MMP↓,
Ca+2↑,
ATP↓, decreased intracellular adenosine triphosphate production,
mtDam↑, mitochondrial dysfunction
Apoptosis↑,
ROS↑,
JNK↑,
eff↓, treatment with ROS scavenger N-acetylcysteine (NAC) and JNK inhibitor SP600125 could partially attenuate apoptosis and DNA damage triggered by DCZ0358.

1378- BBR,    Berberine induces non-small cell lung cancer apoptosis via the activation of the ROS/ASK1/JNK pathway
- in-vitro, Lung, NA
Apoptosis↑,
Casp3↑,
Cyt‑c↑, cytochrome c release
MMP↓,
p‑JNK↑,
eff↓, N-acetyl cysteine (NAC), a ROS scavenger, was sufficient to both suppress apoptosis signal-regulating kinase 1 (ASK1) and JNK activation and disrupt apoptotic induction.

1390- BBR,  Rad,    Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer Cells
- in-vitro, Pca, PC3
RadioS↑, cytotoxic effect of the combination of berberine and irradiation was superior to that of berberine or irradiation alone
Apoptosis↑,
ROS↑, ROS generation was elevated by berberine with or without irradiation.
eff↑, antioxidant NAC inhibited berberine and radiation-induced cell death.
BAX↑,
Casp3↑,
P53↑,
p38↑,
JNK↑,
Bcl-2↓,
ERK↓,
HO-1↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
AIF↝,1,   Apoptosis↑,3,   ATP↓,1,   BAX↑,2,   Bcl-2↓,2,   Ca+2↑,1,   Casp3↑,2,   CDK4↓,1,   CDK6↓,1,   cycD1↓,1,   Cyt‑c↑,2,   eff↓,2,   eff↑,1,   p‑eIF2α↓,1,   ERK↓,1,   HO-1↓,1,   JNK↓,1,   JNK↑,3,   p‑JNK↑,1,   MMP↓,3,   mtDam↑,1,   p38↑,1,   P53↑,1,   p‑PERK↓,1,   RadioS↑,1,   ROS↑,3,   TumCCA↑,1,   TumCP↓,1,   tumCV↓,1,  
Total Targets: 29

Results for Effect on Normal Cells:
ALAT↓,1,   ALP↓,1,   AMPK↑,1,   AST↓,1,   Beclin-1↑,1,   BG↓,1,   Catalase↑,1,   CHOP↓,1,   ER Stress↓,2,   ERK↑,1,   GPx↑,1,   hepatoP↑,1,   IL10↑,1,   IL6↓,1,   Inflam↓,2,   JNK↓,2,   LC3II↑,1,   MAPK↓,1,   mTOR↑,1,   p38↓,1,   ROS↓,1,   SOD↑,1,   STAT1↓,1,   STAT4↓,1,   Th1 response↓,1,   Th17↓,1,   TNF-α↓,1,  
Total Targets: 27

Scientific Paper Hit Count for: JNK, c-Jun N-terminal kinase (JNK)
7 Berberine
1 Radiotherapy/Radiation
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:41  Target#:168  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page