Database Query Results : Vitamin C (Ascorbic Acid), , TumCCA

VitC, Vitamin C (Ascorbic Acid): Click to Expand ⟱
Features:
High-dose vitamin C: Some studies have suggested that high-dose vitamin C may be effective in treating certain types of cancer, such as ovarian cancer and pancreatic cancer.
Symptoms of vitamin C deficiency include fatigue, weakness, poor wound healing, ecchymoses, xerosis, lower extremity edema, and musculoskeletal pain—most of them are often observed in end-stage cancer patients. -Vitamin C is an essential nutrient involved in the repair of tissue, the formation of collagen, and the enzymatic production of certain neurotransmitters. It is required for the functioning of several enzymes and is important for immune system function.
-Ascorbic Acid, Different levels in different Organs
Homeostasis ranging from about 0.2 mM in the muscle and heart, and up to 10 mM in the brain and adrenal gland. -(Note the Oncomagnetic success in the brain also was then under conditions of high Vitamin C)

-Ascorbic acid is an electron donor
Ascorbic Acid, can be a Pro-oxidant
"The pro-oxidative activity of ascorbic acid (Figure 2) is associated with the interaction with transition metal ions (especially iron and copper). Under conditions of high, millimolar ascorbate concentration, vitamin C catalyzes the reduction of free transition metal ions, which causes the formation of oxygen radicals."
Ascorbic Acid, formation of H2O2 (Hydrogen Peroxide)
Many studies indicate the toxicity of ascorbate to cancer cells. Much evidence indicates that the underlying phenomenon is the pro-oxidative activity of ascorbate, which induces the formation of H2O2 and oxidative stress.
"ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H(2)O(2)"
-High dose VitC therapy may not be for those with kidney problems
-Oral supplement up to 10g/day?
-Direct regulator of TET↑
-caution for (G6PD-) deficient patients receiving vitamin C infusions

-Note plasma half-life 30mins to 1hr, 1.5-2hr elimination half-life.
oral BioAv water soluble, but has limitiations as 100mg yeilds 60uM/L in plasma, but 1000mg only yeilds 85uM/L. mM concentration are required for effectiveness on cancer cells. Hence why IV administration is common. Boosting HIF increases the intracellular uptake of oxidized VitC
Pathways:
- high dose induces ROS production in cancer cells. Otherwise well known antioxidant in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Caspases↑, DNA damage↑, cl-PARP↑,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, NF-κB↓,
- reactivate genes thereby inhibiting cancer cell growth : P53↑, TET↑
- cause Cell cycle arrest : TumCCA, cyclin D1↓, CDK2↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓,
- Others: PI3K↓, AKT↓, STAT↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Hepatoprotective,

- Selectivity: Cancer Cells vs Normal Cells
Selenium supplementation may protect cells against iron-dependent cell death by supporting increased expression of selenoproteins, including GPX4, which defend against oxidative stress. Meaning it may decrease effectiveness of high dose VitC.(#4468)


TumCCA, Tumor cell cycle arrest: Click to Expand ⟱
Source:
Type:
Tumor cell cycle arrest refers to the process by which cancer cells stop progressing through the cell cycle, which is the series of phases that a cell goes through to divide and replicate. This arrest can occur at various checkpoints in the cell cycle, including the G1, S, G2, and M phases. S, G1, G2, and M are the four phases of mitosis.


Scientific Papers found: Click to Expand⟱
4561- SNP,  VitC,    Cellular Effects Nanosilver on Cancer and Non-cancer Cells: Potential Environmental and Human Health Impacts
- in-vitro, CRC, HCT116 - in-vitro, Nor, HEK293
NRF2↑, Nanosilver increased Nrf2 protein expression and disrupted the cell cycle at the G1 and G2/M phases.
TumCCA↑, AgNPs interact with DNA to stop the cell cycle and lead to apoptosis
ROS↑, Nanosilver induced significant mitochondrial oxidative stress in HCT116, whereas it did not in the non-cancer HIEC-6 and nanosilver/sodium ascorbate co-treatment was preferentially lethal to HCT116 cells,
selectivity↑,
*AntiViral↑, AgNPs are effective antiviral agents against various viruses such as human immunodeficiency virus, hepatitis B virus, and monkey pox virus through interaction with surface glycoproteins on the virus
*toxicity↝, Citrate and PVP-coated AgNPs have been found to be less toxic than non-coated AgNPs
ETC↓, AgNPs affects mitochondrial function through the disruption of the electron transport chain2,24,26,33,39–41
MMP↓, Studies have shown that exposure to AgNPs resulted in a decrease of mitochondrial membrane potential (MMP) in various in vitro and in vivo experiments
DNAdam↑, AgNPs has also been shown to interact with and induce damage to DNA, DNA strand breaks, DNA damage
Apoptosis↑, apoptosis induced by AgNPs were through membrane lipid peroxidation, ROS, and oxidative stress
lipid-P↑,
other↝, Several studies have showed AgNPs interact with various proteins such as haemoglobin, serum albumin, metallothioneins, copper transporters, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), malate dehydrogenase (MDH), and bacterial proteins.
UPR↑, Studies have shown exposure to AgNPs induces activation of the UPR
*GRP78/BiP↑, AgNPs induced increased levels of GRP78, phosphorylated PERK, phosphorylated eIF2-α, and phosphorylated IRE1α, spliced XBP1, cleaved ATF-6, CHOP, JNK and caspase 12
*p‑PERK↑,
*cl‑eIF2α↑,
*CHOP↑,
*JNK↑,
Hif1a↓, One study showed AgNPs inhibits HIF-1 accumulation and suppresses expression of HIF-1 target genes in breast cancer cells (MCF-7) and also found the protein levels of HIF-1α and HIF-1β decreased
AntiCan↑, Many studies have shown that ascorbic acid, on its own, has anti-cancer effects
*toxicity↓, However, when the rats were treated with both ascorbic acid and AgNPs, a decrease in toxic effects was observed in non-cancer parotid glands in rats
eff↑, Studies have shown both AgNPs and ascorbic acid have greater effects and toxicity in cancer cells relative to non-cancer cells

3132- VitC,    Vitamin C affects G0/G1 cell cycle and autophagy by downregulating of cyclin D1 in gastric carcinoma cells
- in-vitro, GC, MKN45
TumCCA↑, Vitamin C significantly elevated the percentage of cells at G0/G1 phase, whereas the percentage of S phase cells was decreased.
cycD1↓, vitamin C treatment resulted in downregulation of cell cycle-related protein Cyclin D1

631- VitC,    Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2
- vitro+vivo, Liver, NA
SVCT-2∅, response to VC was correlated with sodium-dependent vitamin C transporter 2 (SVCT-2) expressions. Most importantly, SVCT-2 was highly expressed in liver CSCs
ROS↑,
DNAdam↑,
ATP↓,
TumCCA↑,
Apoptosis↑,
OS↑, VC use was linked to improved disease-free survival (DFS) in HCC patients
CD133↓, CD133+
EpCAM↓, EpCAM+
OV6↓, OV6+
γH2AX↑, p-H2AX induced by VC

1216- VitC,    Ascorbic acid induces ferroptosis via STAT3/GPX4 signaling in oropharyngeal cancer
- in-vitro, Laryn, FaDu - in-vitro, SCC, SCC-154
Iron↝, impairing iron metabolism
ROS↑,
tumCV↓,
Ki-67↓,
TumCCA↑, accumulation in the G0/G1 phase
Ferroptosis↑,
GSH↓,
ROS↑,
MDA↑,
STAT3↓,
GPx4↓,
p‑STAT3↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
AntiCan↑,1,   Apoptosis↑,2,   ATP↓,1,   CD133↓,1,   cycD1↓,1,   DNAdam↑,2,   eff↑,1,   EpCAM↓,1,   ETC↓,1,   Ferroptosis↑,1,   GPx4↓,1,   GSH↓,1,   Hif1a↓,1,   Iron↝,1,   Ki-67↓,1,   lipid-P↑,1,   MDA↑,1,   MMP↓,1,   NRF2↑,1,   OS↑,1,   other↝,1,   OV6↓,1,   ROS↑,4,   selectivity↑,1,   STAT3↓,1,   p‑STAT3↓,1,   SVCT-2∅,1,   TumCCA↑,4,   tumCV↓,1,   UPR↑,1,   γH2AX↑,1,  
Total Targets: 31

Results for Effect on Normal Cells:
AntiViral↑,1,   CHOP↑,1,   cl‑eIF2α↑,1,   GRP78/BiP↑,1,   JNK↑,1,   p‑PERK↑,1,   toxicity↓,1,   toxicity↝,1,  
Total Targets: 8

Scientific Paper Hit Count for: TumCCA, Tumor cell cycle arrest
4 Vitamin C (Ascorbic Acid)
1 Silver-NanoParticles
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:166  Target#:322  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page