condition found
Features: |
High-dose vitamin C: Some studies have suggested that high-dose vitamin C may be effective in treating certain types of cancer, such as ovarian cancer and pancreatic cancer. Symptoms of vitamin C deficiency include fatigue, weakness, poor wound healing, ecchymoses, xerosis, lower extremity edema, and musculoskeletal pain—most of them are often observed in end-stage cancer patients. -Vitamin C is an essential nutrient involved in the repair of tissue, the formation of collagen, and the enzymatic production of certain neurotransmitters. It is required for the functioning of several enzymes and is important for immune system function. -Ascorbic Acid, Different levels in different Organs Homeostasis ranging from about 0.2 mM in the muscle and heart, and up to 10 mM in the brain and adrenal gland. -(Note the Oncomagnetic success in the brain also was then under conditions of high Vitamin C) -Ascorbic acid is an electron donor Ascorbic Acid, can be a Pro-oxidant "The pro-oxidative activity of ascorbic acid (Figure 2) is associated with the interaction with transition metal ions (especially iron and copper). Under conditions of high, millimolar ascorbate concentration, vitamin C catalyzes the reduction of free transition metal ions, which causes the formation of oxygen radicals." Ascorbic Acid, formation of H2O2 (Hydrogen Peroxide) Many studies indicate the toxicity of ascorbate to cancer cells. Much evidence indicates that the underlying phenomenon is the pro-oxidative activity of ascorbate, which induces the formation of H2O2 and oxidative stress. "ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H(2)O(2)" -High dose VitC therapy may not be for those with kidney problems -Oral supplement up to 10g/day? -Direct regulator of TET↑ -caution for (G6PD-) deficient patients receiving vitamin C infusions -Note plasma half-life 30mins to 1hr, 1.5-2hr elimination half-life. oral BioAv water soluble, but has limitiations as 100mg yeilds 60uM/L in plasma, but 1000mg only yeilds 85uM/L. mM concentration are required for effectiveness on cancer cells. Hence why IV administration is common. Boosting HIF increases the intracellular uptake of oxidized VitC Pathways: - high dose induces ROS production in cancer cells. Otherwise well known antioxidant in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Caspases↑, DNA damage↑, cl-PARP↑, - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, NF-κB↓, - reactivate genes thereby inhibiting cancer cell growth : P53↑, TET↑ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TET1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, - Others: PI3K↓, AKT↓, STAT↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Hepatoprotective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: effect |
The Warburg effect is a metabolic phenomenon in which cancer cells preferentially use glycolysis for energy production, even in the presence of oxygen. Targeting the pathways involved in the Warburg effect is a promising strategy for cancer treatment. The Warburg effect is always accompanied by a hypoxic condition, and activation of HIF-1a contributes to the Warburg effect through coordinated upregulation of glycolysis and downregulation of oxidative phosphorylation. Warburg effect (GLUT1, LDHA, HK2, and PKM2). Here are some of the key pathways and potential targets: Note: use database Filter to find inhibitors: Ex pick target HIF1α, and effect direction ↓ 1.Glycolysis Inhibitors:(2-DG, 3-BP) -HK2 Inhibitors: such as 2-deoxyglucose, can reduce glycolysis -PFK1 Inhibitors: such as PFK-158, can reduce glycolysis -PFKFB Inhibitors: -PKM2 Inhibitors: (Shikonin) -Can reduce glycolysis -LDH Inhibitors: (Gossypol, FX11) -Reducing the conversion of pyruvate to lactate. -Inhibiting the production of ATP and NADH. -GLUT1 Inhibitors: (phloretin, WZB117) -A key transporter involved in glucose uptake. -GLUT3 Inhibitors: -PDK1 Inhibitors: (dichloroacetate) - A key enzyme involved in the regulation of glycolysis. 2.Gluconeogenesis pathway: -FBP1 Activators: can increase gluconeogenesis -PEPCK1 Inhibitors: can reduce gluconeogenesis 3.Pentose phosphate pathway: -G6PD Inhibitors: can reduce the pentose phosphate pathway 4.Mitochondrial metabolism: -MPC1 Inhibitors: can reduce mitochondrial metabolism and inhibit cancer -SDH Inhibitors: can reduce mitochondrial metabolism and inhibit cancer cell growth. 5.Hypoxia-inducible factor 1 alpha (HIF1α) pathway: -HIF1α inhibitors: (PX-478,Shikonin) -Reduce expression of glycolytic genes and inhibit cancer cell growth. 6.AMP-activated protein kinase (AMPK) pathway: -AMPK activators: (metformin,AICAR,berberine) -Can increase AMPK activity and inhibit cancer cell growth. 7.mTOR pathway: -mTOR inhibitors:(rapamycin,everolimus) -Can reduce mTOR activity and inhibit cancer cell growth. |
3137- | VitC,  |   | Vitamin C inhibits the growth of colorectal cancer cell HCT116 and reverses the glucose-induced oncogenic effect by downregulating the Warburg effect |
- | in-vitro, | CRC, | HCT116 |
3145- | VitC,  |   | Warburg_effect">Vitamin C inhibits the growth of colorectal cancer cell HCT116 and reverses the glucose‐induced oncogenic effect by downregulating the Warburg effect |
- | in-vitro, | CRC, | HCT116 |
3141- | VitC,  |   | High-dose Vitamin C inhibits PD-L1 expression by activating AMPK in colorectal cancer |
- | in-vitro, | CRC, | HCT116 |
3140- | VitC,  |   | Vitamin-C-dependent downregulation of the citrate metabolism pathway potentiates pancreatic ductal adenocarcinoma growth arrest |
- | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | Nor, | HEK293 |
3138- | VitC,  |   | The Hypoxia-inducible Factor Renders Cancer Cells More Sensitive to Vitamin C-induced Toxicity |
- | in-vitro, | RCC, | RCC4 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | BC, | MDA-MB-435 | - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | Colon, | SW48 | - | in-vitro, | GBM, | U251 |
3136- | VitC,  |   | Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer |
- | in-vitro, | Colon, | SW48 | - | in-vitro, | Colon, | LoVo |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:166 Target#:947 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid