condition found tbRes List
VitC, Vitamin C (Ascorbic Acid): Click to Expand ⟱
Features:
High-dose vitamin C: Some studies have suggested that high-dose vitamin C may be effective in treating certain types of cancer, such as ovarian cancer and pancreatic cancer.
Symptoms of vitamin C deficiency include fatigue, weakness, poor wound healing, ecchymoses, xerosis, lower extremity edema, and musculoskeletal pain—most of them are often observed in end-stage cancer patients. -Vitamin C is an essential nutrient involved in the repair of tissue, the formation of collagen, and the enzymatic production of certain neurotransmitters. It is required for the functioning of several enzymes and is important for immune system function.
-Ascorbic Acid, Different levels in different Organs
Homeostasis ranging from about 0.2 mM in the muscle and heart, and up to 10 mM in the brain and adrenal gland. -(Note the Oncomagnetic success in the brain also was then under conditions of high Vitamin C)

-Ascorbic acid is an electron donor
Ascorbic Acid, can be a Pro-oxidant
"The pro-oxidative activity of ascorbic acid (Figure 2) is associated with the interaction with transition metal ions (especially iron and copper). Under conditions of high, millimolar ascorbate concentration, vitamin C catalyzes the reduction of free transition metal ions, which causes the formation of oxygen radicals."
Ascorbic Acid, formation of H2O2 (Hydrogen Peroxide)
Many studies indicate the toxicity of ascorbate to cancer cells. Much evidence indicates that the underlying phenomenon is the pro-oxidative activity of ascorbate, which induces the formation of H2O2 and oxidative stress.
"ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H(2)O(2)"
-High dose VitC therapy may not be for those with kidney problems
-Oral supplement up to 10g/day?
-Direct regulator of TET↑
-caution for (G6PD-) deficient patients receiving vitamin C infusions

-Note plasma half-life 30mins to 1hr, 1.5-2hr elimination half-life.
oral BioAv water soluble, but has limitiations as 100mg yeilds 60uM/L in plasma, but 1000mg only yeilds 85uM/L. mM concentration are required for effectiveness on cancer cells. Hence why IV administration is common. Boosting HIF increases the intracellular uptake of oxidized VitC
Pathways:
- high dose induces ROS production in cancer cells. Otherwise well known antioxidant in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Caspases↑, DNA damage↑, cl-PARP↑,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, NF-κB↓,
- reactivate genes thereby inhibiting cancer cell growth : P53↑, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓,
- Others: PI3K↓, AKT↓, STAT↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Hepatoprotective,

- Selectivity: Cancer Cells vs Normal Cells


Warburg, Warburg Effect: Click to Expand ⟱
Source:
Type: effect
The Warburg effect is a metabolic phenomenon in which cancer cells preferentially use glycolysis for energy production, even in the presence of oxygen. Targeting the pathways involved in the Warburg effect is a promising strategy for cancer treatment.
The Warburg effect is always accompanied by a hypoxic condition, and activation of HIF-1a contributes to the Warburg effect through coordinated upregulation of glycolysis and downregulation of oxidative phosphorylation.
Warburg effect (GLUT1, LDHA, HK2, and PKM2).
Here are some of the key pathways and potential targets:

Note: use database Filter to find inhibitors: Ex pick target HIF1α, and effect direction ↓

1.Glycolysis Inhibitors:(2-DG, 3-BP)
-HK2 Inhibitors: such as 2-deoxyglucose, can reduce glycolysis
-PFK1 Inhibitors: such as PFK-158, can reduce glycolysis
-PFKFB Inhibitors:
-PKM2 Inhibitors: (Shikonin)
-Can reduce glycolysis
-LDH Inhibitors: (Gossypol, FX11)
-Reducing the conversion of pyruvate to lactate.
-Inhibiting the production of ATP and NADH.
-GLUT1 Inhibitors: (phloretin, WZB117)
-A key transporter involved in glucose uptake.
-GLUT3 Inhibitors:
-PDK1 Inhibitors: (dichloroacetate)
- A key enzyme involved in the regulation of glycolysis.

2.Gluconeogenesis pathway:
-FBP1 Activators: can increase gluconeogenesis
-PEPCK1 Inhibitors: can reduce gluconeogenesis

3.Pentose phosphate pathway:
-G6PD Inhibitors: can reduce the pentose phosphate pathway

4.Mitochondrial metabolism:
-MPC1 Inhibitors: can reduce mitochondrial metabolism and inhibit cancer
-SDH Inhibitors: can reduce mitochondrial metabolism and inhibit cancer cell growth.

5.Hypoxia-inducible factor 1 alpha (HIF1α) pathway:
-HIF1α inhibitors: (PX-478,Shikonin)
-Reduce expression of glycolytic genes and inhibit cancer cell growth.

6.AMP-activated protein kinase (AMPK) pathway:
-AMPK activators: (metformin,AICAR,berberine)
-Can increase AMPK activity and inhibit cancer cell growth.

7.mTOR pathway:
-mTOR inhibitors:(rapamycin,everolimus)
-Can reduce mTOR activity and inhibit cancer cell growth.


Scientific Papers found: Click to Expand⟱
3137- VitC,    Vitamin C inhibits the growth of colorectal cancer cell HCT116 and reverses the glucose-induced oncogenic effect by downregulating the Warburg effect
- in-vitro, CRC, HCT116
Warburg↓, Notably, as a potential Warburg effect inhibitor, VC suppressed cancer growth in a concentration-dependent manner
TumCG↓,

3145- VitC,    Warburg_effect">Vitamin C inhibits the growth of colorectal cancer cell HCT116 and reverses the glucose‐induced oncogenic effect by downregulating the Warburg effect
- in-vitro, CRC, HCT116
Warburg↓, Notably, as a potential Warburg effect inhibitor, VC suppressed cancer growth in a concentration-dependent manner and further reversed the glucose-induced oncogenic effect.
TumCG↓,
Glycolysis↓,
GlucoseCon↓, 1 h-exposure to 5 mM VC led to an almost 50% reduction in glucose consumption, ATP and lactate contents in cancer cells, with mild impact on normal cells
ATP↓,
lactateProd↓,
selectivity↑, Meanwhile, normal cell had little apparent change
GLUT1↓, (GLUT1, PKM2, and LDHA) were significantly decreased, with p-AMPK/AMPK increased and p-mTOR/mTOR decreased, consistent with the cytotoxicity on 3 kinds of cancer cells
PKM2↓,
LDHA↓,
mTOR↓,

3141- VitC,    High-dose Vitamin C inhibits PD-L1 expression by activating AMPK in colorectal cancer
- in-vitro, CRC, HCT116
Glycolysis↓, Vitamin C inhibits immune evasion by regulating glycolysis
eff↑, VitC suppresses tumor growth and enhances immunotherapy in combination with anti-PD-L1
PD-L1↓, We found that VitC inhibits aerobic glycolysis in HCT116 cells while also downregulating PD-L1 expression.
AMPK↑, VitC's activation of AMPK, which downregulates HK2 and NF-κB, ultimately resulting in reduced PD-L1 expression and increased T cell infiltration.
HK2↓,
NF-kB↓,
Warburg↓, Our research shows that high-dose VitC downregulating the Warburg effect, suppressing CRC growth
tumCV↓, After treatment with VitC, the cell viability of HCT116 cells significantly decreased
GLUT1↓, marked reduction in the mRNA level of glycolysis-related proteins GLUT1, PKM2, and LDHA
PKM2↓,
LDHA↓,
CD4+↑, Our research shows that high-dose VitC increases CD4+ and CD8+ T cell infiltration in tumor tissues by inhibiting PD-L1
CD8+↑,

3140- VitC,    Vitamin-C-dependent downregulation of the citrate metabolism pathway potentiates pancreatic ductal adenocarcinoma growth arrest
- in-vitro, PC, MIA PaCa-2 - in-vitro, Nor, HEK293
citrate↓, pharmacological doses of vitamin C are capable of exerting an inhibitory action on the activity of CS, reducing glucose-derived citrate levels
FASN↓, Moreover, ascorbate targets citrate metabolism towards the de novo lipogenesis pathway, impairing fatty acid synthase (FASN) and ATP citrate lyase (ACLY) expression.
ACLY↓,
LDH↓, correlated with a remarkable decrease in extracellular pH through inhibition of lactate dehydrogenase (LDH) and overall reduced glycolytic metabolism.
Glycolysis↓,
Warburg↓, Dismissed citrate metabolism correlated with reduced Warburg effectors such as the pyruvate dehydrogenase kinase 1 (PDK1) and the glucose transporter 1 (GLUT1),
PDK1↓,
GLUT1↓,
LDHA↓, Reduced LDHA expression was also observed after vitamin C exposure, leading to a vast extracellular acidification rate (ECAR) reduction.
ECAR↓,
PDH↑, enhancing PDH activity
eff↑, Surprisingly, an impressive 85% of tumor growth inhibition is described in the combinatory treatment of vitamin C and gemcitabine in our preclinical PDAC PDX model

3138- VitC,    The Hypoxia-inducible Factor Renders Cancer Cells More Sensitive to Vitamin C-induced Toxicity
- in-vitro, RCC, RCC4 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-435 - in-vitro, Ovarian, SKOV3 - in-vitro, Colon, SW48 - in-vitro, GBM, U251
eff↑, Here, we show that a Warburg effect triggered by activation of the hypoxia-inducible factor (HIF) pathway greatly enhances Vc-induced toxicity in multiple cancer cell lines
Warburg↓,
BioAv↑, HIF increases the intracellular uptake of oxidized Vc through its transcriptional target glucose transporter 1 (GLUT1),
ROS↑, resulting high levels of intracellular Vc induce oxidative stress and massive DNA damage, which then causes metabolic exhaustion by depleting cellular ATP reserves.
DNAdam↑,
ATP↓,
eff↑, Activation of HIF increases the susceptibility to Vc-induced cell toxicity
necrosis↑, High intracellular levels of Vc increase ROS and trigger necrosis in VHL-defective renal cancer cells.
PARP↑, Activation of the PARP Pathway by Vc Depletes Intracellular ATP Reserves in VHL-defective Renal Cancer Cells

3136- VitC,    Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer
- in-vitro, Colon, SW48 - in-vitro, Colon, LoVo
ERK↓, Vitamin C induces RAS detachment from the cell membrane inhibiting ERK 1/2 and PKM2 phosphorylation.
p‑PKM2↓,
GLUT1↓, As a consequence of this activity, strong downregulation of the glucose transporter (GLUT-1) and pyruvate kinase M2 (PKM2)
Warburg↓, causing a major blockage of the Warburg effect and therefore energetic stress.
TumCD↑, Vitamin C selectively kills KRAS mutant colon cancer cells alone or in combination with cetuximab
eff↑, Remarkably, treatment of HT29, SW480 and LoVo cells with cetuximab (0,4 μM) and vitamin C (5mM) abolished cell growth in the three lines tested.
ROS↓, Interestingly, we detected that vitamin C treatment dramatically reduced intracellular ROS levels in SW480 and LoVo cells (Figure 2D),
cMyc↓, strong inhibition of c-Myc oncogene in colonospheres treated at concentrations of vitamin C as low as 100 μM


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
ACLY↓,1,   AMPK↑,1,   ATP↓,2,   BioAv↑,1,   CD4+↑,1,   CD8+↑,1,   citrate↓,1,   cMyc↓,1,   DNAdam↑,1,   ECAR↓,1,   eff↑,5,   ERK↓,1,   FASN↓,1,   GlucoseCon↓,1,   GLUT1↓,4,   Glycolysis↓,3,   HK2↓,1,   lactateProd↓,1,   LDH↓,1,   LDHA↓,3,   mTOR↓,1,   necrosis↑,1,   NF-kB↓,1,   PARP↑,1,   PD-L1↓,1,   PDH↑,1,   PDK1↓,1,   PKM2↓,2,   p‑PKM2↓,1,   ROS↓,1,   ROS↑,1,   selectivity↑,1,   TumCD↑,1,   TumCG↓,2,   tumCV↓,1,   Warburg↓,6,  
Total Targets: 36

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: Warburg, Warburg Effect
6 Vitamin C (Ascorbic Acid)
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:166  Target#:947  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page