condition found
Features: |
High-dose vitamin C: Some studies have suggested that high-dose vitamin C may be effective in treating certain types of cancer, such as ovarian cancer and pancreatic cancer. Symptoms of vitamin C deficiency include fatigue, weakness, poor wound healing, ecchymoses, xerosis, lower extremity edema, and musculoskeletal pain—most of them are often observed in end-stage cancer patients. -Vitamin C is an essential nutrient involved in the repair of tissue, the formation of collagen, and the enzymatic production of certain neurotransmitters. It is required for the functioning of several enzymes and is important for immune system function. -Ascorbic Acid, Different levels in different Organs Homeostasis ranging from about 0.2 mM in the muscle and heart, and up to 10 mM in the brain and adrenal gland. -(Note the Oncomagnetic success in the brain also was then under conditions of high Vitamin C) -Ascorbic acid is an electron donor Ascorbic Acid, can be a Pro-oxidant "The pro-oxidative activity of ascorbic acid (Figure 2) is associated with the interaction with transition metal ions (especially iron and copper). Under conditions of high, millimolar ascorbate concentration, vitamin C catalyzes the reduction of free transition metal ions, which causes the formation of oxygen radicals." Ascorbic Acid, formation of H2O2 (Hydrogen Peroxide) Many studies indicate the toxicity of ascorbate to cancer cells. Much evidence indicates that the underlying phenomenon is the pro-oxidative activity of ascorbate, which induces the formation of H2O2 and oxidative stress. "ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H(2)O(2)" -High dose VitC therapy may not be for those with kidney problems -Oral supplement up to 10g/day? -Direct regulator of TET↑ -caution for (G6PD-) deficient patients receiving vitamin C infusions -Note plasma half-life 30mins to 1hr, 1.5-2hr elimination half-life. oral BioAv water soluble, but has limitiations as 100mg yeilds 60uM/L in plasma, but 1000mg only yeilds 85uM/L. mM concentration are required for effectiveness on cancer cells. Hence why IV administration is common. Boosting HIF increases the intracellular uptake of oxidized VitC Pathways: - high dose induces ROS production in cancer cells. Otherwise well known antioxidant in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Caspases↑, DNA damage↑, cl-PARP↑, - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑">Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, NF-κB↓, - reactivate genes thereby inhibiting cancer cell growth : P53↑, TET↑ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TET1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, - Others: PI3K↓, AKT↓, STAT↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Hepatoprotective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Caspases are a cysteine protease that speed up a chemical reaction via pointing their target substrates following an aspartic acid residue.1 They are grouped into apoptotic (caspase-2, 3, 6, 7, 8, 9 and 10) and inflammatory (caspase-1, 4, 5, 11 and 12) mediated caspases. Caspase-1 may have both tumorigenic or antitumorigenic effects on cancer development and progression, but it depends on the type of inflammasome, methodology, and cancer. Catalase is an enzyme found in nearly all living cells exposed to oxygen. Its primary role is to protect cells from oxidative damage by catalyzing the conversion of hydrogen peroxide (H₂O₂), a potentially damaging byproduct of metabolism, into water (H₂O) and oxygen (O₂). This detoxification process is crucial because excess H₂O₂ can lead to the formation of reactive oxygen species (ROS) that damage proteins, lipids, and DNA. Catalase and Cancer Oxidative Stress and Cancer: Cancer cells often experience increased levels of oxidative stress due to rapid proliferation and metabolic changes. This stress can lead to DNA damage, promoting tumorigenesis. Catalase helps mitigate oxidative stress, and its expression can influence the survival and proliferation of cancer cells. Expression Levels in Different Cancers: Overexpression: In some cancers, such as breast cancer and certain types of leukemia, catalase may be overexpressed. This overexpression can help cancer cells survive in oxidative environments, potentially leading to more aggressive tumor behavior. Downregulation: Conversely, in other cancers, such as colorectal cancer, reduced catalase expression has been observed. This downregulation can lead to increased oxidative stress, contributing to tumor progression and metastasis. Prognostic Implications: Survival Rates: Studies have shown that high levels of catalase expression can be associated with poor prognosis in certain cancers, as it may enable cancer cells to resist apoptosis (programmed cell death) induced by oxidative stress. Some types of cancer cells have been reported to exhibit lower catalase activity, possibly increasing their vulnerability to oxidative damage under certain conditions. This vulnerability has even been exploited in some therapeutic strategies (for example, approaches that generate excess H₂O₂ or other ROS specifically targeting cancer cells have been researched). |
3112- | VitC,  |   | Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid |
- | Review, | Nor, | NA |
3110- | VitC,  |   | Vitamin C Attenuates Oxidative Stress, Inflammation, and Apoptosis Induced by Acute Hypoxia through the Nrf2/Keap1 Signaling Pathway in Gibel Carp (Carassius gibelio) |
- | in-vivo, | Nor, | NA |
619- | VitC,  |   | Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress |
618- | VitC,  |   | Low levels of catalase enzyme make cancer cells vulnerable to high-dose ascorbate |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:166 Target#:46 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid