condition found tbRes List
VitC, Vitamin C (Ascorbic Acid): Click to Expand ⟱
Features:
High-dose vitamin C: Some studies have suggested that high-dose vitamin C may be effective in treating certain types of cancer, such as ovarian cancer and pancreatic cancer.
Symptoms of vitamin C deficiency include fatigue, weakness, poor wound healing, ecchymoses, xerosis, lower extremity edema, and musculoskeletal pain—most of them are often observed in end-stage cancer patients. -Vitamin C is an essential nutrient involved in the repair of tissue, the formation of collagen, and the enzymatic production of certain neurotransmitters. It is required for the functioning of several enzymes and is important for immune system function.
-Ascorbic Acid, Different levels in different Organs
Homeostasis ranging from about 0.2 mM in the muscle and heart, and up to 10 mM in the brain and adrenal gland. -(Note the Oncomagnetic success in the brain also was then under conditions of high Vitamin C)

-Ascorbic acid is an electron donor
Ascorbic Acid, can be a Pro-oxidant
"The pro-oxidative activity of ascorbic acid (Figure 2) is associated with the interaction with transition metal ions (especially iron and copper). Under conditions of high, millimolar ascorbate concentration, vitamin C catalyzes the reduction of free transition metal ions, which causes the formation of oxygen radicals."
Ascorbic Acid, formation of H2O2 (Hydrogen Peroxide)
Many studies indicate the toxicity of ascorbate to cancer cells. Much evidence indicates that the underlying phenomenon is the pro-oxidative activity of ascorbate, which induces the formation of H2O2 and oxidative stress.
"ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H(2)O(2)"
-High dose VitC therapy may not be for those with kidney problems
-Oral supplement up to 10g/day?
-Direct regulator of TET↑
-caution for (G6PD-) deficient patients receiving vitamin C infusions

-Note plasma half-life 30mins to 1hr, 1.5-2hr elimination half-life.
oral BioAv water soluble, but has limitiations as 100mg yeilds 60uM/L in plasma, but 1000mg only yeilds 85uM/L. mM concentration are required for effectiveness on cancer cells. Hence why IV administration is common. Boosting HIF increases the intracellular uptake of oxidized VitC
Pathways:
- high dose induces ROS production in cancer cells. Otherwise well known antioxidant in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Caspases↑, DNA damage↑, cl-PARP↑,
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF, NF-κB↓,
- reactivate genes thereby inhibiting cancer cell growth : P53↑, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF, HIF-1α↓,
- Others: PI3K↓, AKT↓, STAT↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Hepatoprotective,

- Selectivity: Cancer Cells vs Normal Cells


VEGF, Vascular endothelial growth factor: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
A signal protein produced by many cells that stimulates the formation of blood vessels. Vascular endothelial growth factor (VEGF) is a signal protein that plays a crucial role in angiogenesis, the process by which new blood vessels form from existing ones. This process is vital for normal physiological functions, such as wound healing and the menstrual cycle, but it is also a key factor in the growth and spread of tumors in cancer.
Because of its significant role in tumor growth and progression, VEGF has become a target for cancer therapies. Anti-VEGF therapies, such as monoclonal antibodies (e.g., bevacizumab) and small molecule inhibitors, aim to inhibit the action of VEGF, thereby reducing blood supply to tumors and limiting their growth. These therapies have been used in various types of cancer, including colorectal, lung, and breast cancer.


Scientific Papers found: Click to Expand⟱
3107- VitC,    Repurposing Vitamin C for Cancer Treatment: Focus on Targeting the Tumor Microenvironment
- Review, Var, NA
Risk↓, VitC supplementation resulted in dose-dependent reductions in all-cause mortality and the risk of various cancers
*ROS↓, Vitamin C (VitC) at the physiological dose (μM) is known to exhibit antioxidant properties.
ROS↑, However, it functions as a prooxidant at the pharmacological dose (mM) achieved by intravenous administration.
VEGF↓, VitC suppressed tumor angiogenesis in colon cancer-bearing mice by downregulating the expression and secretion of VEGF-A and VEGF-D
COX2↓, VitC impairs COX-2 activity and inhibits VEGF mRNA expression in melanoma cells in a time-dependent manner
ER Stress↑, VitC increases the ER stress-mediated breast cancer apoptosis via activation of the IRE-JNK-CHOP signaling pathway, an effect independent of ROS
IRE1↑,
JNK↑,
CHOP↑,
Hif1a↓, On the one hand, VitC directly inhibits HIF-1α-mediated glycolysis-related genes expression and the downstream acidic metabolites
eff↑, ROS generated by VitC treatment exerts a synergistic effect with other glycolysis inhibitors, providing a combined therapeutic strategy
Glycolysis↓,
MMPs↓, VitC inhibits a variety of metalloproteinases (MMPs) mRNA, which degrade ECM and release growth factors that drive tumor metastasis
TumMeta↓,
YAP/TEAD↓, VitC treatment reduces YAP1 expression while upregulating SYNPO-2; therefore, inhibiting metastasis of TNBC
eff↑, VitC enhances the killing efficiency of Hep G2 cells by low-dose sorafenib in vitro.
TET1↑, VitC stimulation of TET2 activity in the renal cell carcinoma

3146- VitC,    Vitamin C protects against hypoxia, inflammation, and ER stress in primary human preadipocytes and adipocytes
- in-vivo, Nor, NA
*Obesity↓, These findings indicate that Vitamin C can reduce obesity-associated cellular stress and thus provide a rationale for future investigations.
*ER Stress↓, Vitamin C prevented the increase in hypoxia (Fig. 1A–B), significantly reduced the induction of ER stress
*Inflam↓, nd ameliorated the increased expression of inflammatory genes
Hif1a↓, Vitamin C treatment for 24 and 48 h significantly reducing induction of HIF1α protein by 30–40% and VEGFA and GLUT1 mRNA by 40–80%
VEGF↓,
GLUT1↓,
GRP78/BiP↓, significantly reversing the effects of TNFα+PA pre-treatment only on GRP78 induction, by 30–40%


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
CHOP↑,1,   COX2↓,1,   eff↑,2,   ER Stress↑,1,   GLUT1↓,1,   Glycolysis↓,1,   GRP78/BiP↓,1,   Hif1a↓,2,   IRE1↑,1,   JNK↑,1,   MMPs↓,1,   Risk↓,1,   ROS↑,1,   TET1↑,1,   TumMeta↓,1,   VEGF↓,2,   YAP/TEAD↓,1,  
Total Targets: 17

Results for Effect on Normal Cells:
ER Stress↓,1,   Inflam↓,1,   Obesity↓,1,   ROS↓,1,  
Total Targets: 4

Scientific Paper Hit Count for: VEGF, Vascular endothelial growth factor
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:166  Target#:334  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page