condition found tbRes List
BBR, Berberine: Click to Expand ⟱
Features:
Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical.
Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways.

– Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein.
– Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects.

• Effective Dosage in Studies
– Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses.
– Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary.

-IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models)
-IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type
- In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg


-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK.
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK, ERK↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells



FAK, FAK signaling: Click to Expand ⟱
Source: HalifaxProj(inhibit)
Type:
FAK (Focal Adhesion Kinase) is a non-receptor tyrosine kinase that plays a crucial role in cellular processes such as adhesion, migration, proliferation, and survival. It is primarily localized at focal adhesions, where it interacts with integrins and other signaling molecules. FAK promotes cell proliferation by activating signaling pathways such as the PI3K/Akt and MAPK/ERK pathways. These pathways are often upregulated in cancer cells, leading to uncontrolled growth.


Scientific Papers found: Click to Expand⟱
2674- BBR,    Berberine: A novel therapeutic strategy for cancer
- Review, Var, NA - Review, IBD, NA
Inflam↓, anti-inflammatory, antidiabetic, antibacterial, antiparasitic, antidiarrheal, antihypertensive, hypolipidemic, and fungicide.
AntiCan↑, elaborated on the anticancer effects of BBR through the regulation of different molecular pathways such as: inducing apoptosis, autophagy, arresting cell cycle, and inhibiting metastasis and invasion.
Apoptosis↑,
TumAuto↑,
TumCCA↑,
TumMeta↓,
TumCI↓,
eff↑, BBR is shown to have beneficial effects on cancer immunotherapy.
eff↑, BBR inhibited the release of Interleukin 1 beta (IL-1β), Interferon gamma (IFN-γ), Interleukin 6 (IL-6), and Tumor Necrosis Factor-alpha (TNF-α) from LPS stimulated lymphocytes by acting as a dopamine receptor antagonist
CD4+↓, BBR inhibited the proliferation of CD4+ T cells and down-regulated TNF-α and IL-1 and thus, improved autoimmune neuropathy.
TNF-α↓,
IL1↓,
BioAv↓, On the other hand, P-Glycoprotein (P-gp), a secretive pump located in the epithelial cell membrane, restricts the oral bioavailability of a variety of medications, such as BBR. The use of P-gp inhibitors is a common and effective way to prevent this
BioAv↓, Regardless of its low bioavailability, BBR has shown great therapeutic efficacy in the treatment of a number of diseases.
other↓, BBR has been also used as an effective therapeutic agent for Inflammatory Bowel Disease (IBD) for several years
AMPK↑, inhibitory effects on inflammation by regulating different mechanisms such as 5′ Adenosine Monophosphate-Activated Protein Kinase (AMPK. Increase of AMPK
MAPK↓, Mitogen-Activated Protein Kinase (MAPK), and NF-κB signaling pathways
NF-kB↓,
IL6↓, inhibiting the expression of proinflammatory genes such as IL-1, IL-6, Monocyte Chemoattractant Protein 1 (MCP1), TNF-α, Prostaglandin E2 (PGE2), and Cyclooxygenase-2 (COX-2)
MCP1↓,
PGE2↓,
COX2↓,
*ROS↓, BBR protected PC-12 cells (normal) from oxidative damage by suppressing ROS through PI3K/AKT/mTOR signaling pathways
*antiOx↑, BBR therapy improved the antioxidant function of mice intestinal tissue by enhancing the levels of glutathione peroxidase and catalase enzymes.
*GPx↑,
*Catalase↑,
AntiTum↑, Besides, BBR leaves great antitumor effects on multiple types of cancer such as breast cancer,69 bladder cancer,70 hepatocarcinoma,71 and colon cancer.72
TumCP↓, BBR exerts its antitumor activity by inhibiting proliferation, inducing apoptosis and autophagy, and suppressing angiogenesis and metastasis
angioG↓,
Fas↑, by increasing the amounts of Fas receptor (death receptor)/FasL (Fas ligand), ROS, ATM, p53, Retinoblastoma protein (Rb), caspase-9,8,3, TNF-α, Bcl2-associated X protein (Bax), BID
FasL↑,
ROS↑,
ATM↑,
P53↑,
RB1↑,
Casp9↑,
Casp8↑,
Casp3↓,
BAX↑,
Bcl-2↓, and declining Bcl2, Bcl-X, c-IAP1 (inhibitor of apoptosis protein), X-linked inhibitor of apoptosis protein (XIAP), and Survivin levels
Bcl-xL↓,
IAP1↓,
XIAP↓,
survivin↓,
MMP2↓, Furthermore, BBR suppressed Matrix Metalloproteinase-2 (MMP-2), and MMP-9 expression.
MMP9↓,
CycB↓, Inhibition of cyclin B1, cdc2, cdc25c
CDC25↓,
CDC25↓,
Cyt‑c↑, BBR inhibited tumor cell proliferation and migration and induced mitochondria-mediated apoptosis pathway in Triple Negative Breast Cancer (TNBC) by: stimulating cytochrome c release from mitochondria to cytosol
MMP↓, decreased the mitochondrial membrane potential, and enabled cytochrome c release from mitochondria to cytosol
RenoP↑, BBR significantly reduced the destructive effects of cisplatin on the kidney by inhibiting autophagy, and exerted nephroprotective effects.
mTOR↓, U87 cell, Inhibition of m-TOR signaling
MDM2↓, Downregulation of MDM2
LC3II↑, Increase of LC3-II and beclin-1
ERK↓, BBR stimulated AMPK signaling, resulting in reduced extracellular signal–regulated kinase (ERK) activity and COX-2 expression in B16F-10 lung melanoma cells
COX2↓,
MMP3↓, reducing MMP-3 in SGC7901 GC and AGS cells
TGF-β↓, BBR suppressed the invasion and migration of prostate cancer PC-3 cells by inhibiting TGF-β-related signaling molecules which induced Epithelial-Mesenchymal Transition (EMT) such as Bone morphogenetic protein 7 (BMP7),
EMT↑,
ROCK1↓, inhibiting metastasis-associated proteins such as ROCK1, FAK, Ras Homolog Family Member A (RhoA), NF-κB and u-PA, leading to in vitro inhibition of MMP-1 and MMP-13.
FAK↓,
RAS↓,
Rho↓,
NF-kB↓,
uPA↓,
MMP1↓,
MMP13↓,
ChemoSen↑, recent studies have indicated that it can be used in combination with chemotherapy agents


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:
AMPK↑,1,   angioG↓,1,   AntiCan↑,1,   AntiTum↑,1,   Apoptosis↑,1,   ATM↑,1,   BAX↑,1,   Bcl-2↓,1,   Bcl-xL↓,1,   BioAv↓,2,   Casp3↓,1,   Casp8↑,1,   Casp9↑,1,   CD4+↓,1,   CDC25↓,2,   ChemoSen↑,1,   COX2↓,2,   CycB↓,1,   Cyt‑c↑,1,   eff↑,2,   EMT↑,1,   ERK↓,1,   FAK↓,1,   Fas↑,1,   FasL↑,1,   IAP1↓,1,   IL1↓,1,   IL6↓,1,   Inflam↓,1,   LC3II↑,1,   MAPK↓,1,   MCP1↓,1,   MDM2↓,1,   MMP↓,1,   MMP1↓,1,   MMP13↓,1,   MMP2↓,1,   MMP3↓,1,   MMP9↓,1,   mTOR↓,1,   NF-kB↓,2,   other↓,1,   P53↑,1,   PGE2↓,1,   RAS↓,1,   RB1↑,1,   RenoP↑,1,   Rho↓,1,   ROCK1↓,1,   ROS↑,1,   survivin↓,1,   TGF-β↓,1,   TNF-α↓,1,   TumAuto↑,1,   TumCCA↑,1,   TumCI↓,1,   TumCP↓,1,   TumMeta↓,1,   uPA↓,1,   XIAP↓,1,  
Total Targets: 60

Results for Effect on Normal Cells:
antiOx↑,1,   Catalase↑,1,   GPx↑,1,   ROS↓,1,  
Total Targets: 4

Scientific Paper Hit Count for: FAK, FAK signaling
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:41  Target#:110  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page