condition found tbRes List
BBR, Berberine: Click to Expand ⟱
Features:
Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical.
Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways.

– Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein.
– Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects.

• Effective Dosage in Studies
– Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses.
– Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary.

-IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models)
-IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type
- In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg


-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK.
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells



PARP, poly ADP-ribose polymerase (PARP) cleavage: Click to Expand ⟱
Source:
Type:
Poly (ADP-ribose) polymerase (PARP) cleavage is a hallmark of caspase activation. PARP (Poly (ADP-ribose) polymerase) is a family of proteins involved in a variety of cellular processes, including DNA repair, genomic stability, and programmed cell death. PARP enzymes play a crucial role in repairing single-strand breaks in DNA.
PARP has gained significant attention, particularly in the treatment of certain types of tumors, such as those with BRCA1 or BRCA2 mutations. These mutations impair the cell's ability to repair double-strand breaks in DNA through homologous recombination. Cancer cells with these mutations can become reliant on PARP for survival, making them particularly sensitive to PARP inhibitors.
PARP inhibitors, such as olaparib, rucaparib, and niraparib, have been developed as targeted therapies for cancers associated with BRCA mutations.

PARP Family:
The poly (ADP-ribose) polymerases (PARPs) are a family of enzymes involved in a number of cellular processes, including DNA repair, genomic stability, and programmed cell death.
PARP1 is the predominant family member responsible for detecting DNA strand breaks and initiating repair processes, especially through base excision repair (BER).

PARP1 Overexpression:
In several cancer types—including breast, ovarian, prostate, and lung cancers—elevated PARP1 expression and/or activity has been reported.
High PARP1 expression in certain cancers has been associated with aggressive tumor behavior and resistance to therapies (especially those that induce DNA damage).
Increased PARP1 activity may correlate with poorer overall survival in tumors that rely on DNA repair for survival.


Scientific Papers found: Click to Expand⟱
2691- BBR,    Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cells
- in-vitro, Oral, KB
tumCV↓, viability of KB cells was found to decrease significantly in the presence of berberine in a dose-dependent manner.
DNAdam↑, berberine induced the fragmentation of genomic DNA, changes in cell morphology, and nuclear condensation.
Casp3↑, caspase-3 and -7 activation, and an increase in apoptosis were observed.
Casp7↑,
FasL↑, Berberine was also found to upregulate significantly the expression of the death receptor ligand, FasL
Casp8↑, triggered the activation of pro-apoptotic factors such as caspase-8, -9 and -3 and poly(ADP-ribose) polymerase (PARP).
Casp9↑,
PARP↑,
BAX↑, Bax, Bad and Apaf-1 were also significantly upregulated by berberine.
BAD↑,
APAF1↑,
MMP2↓, We also found that berberine-induced migration suppression was mediated by downregulation of MMP-2 and MMP-9 through phosphorylation of p38 MAPK.
MMP9↓,
p‑p38↑, This suggests that berberine-induced activation of the p38 and ERK1/2 MAPK pathways is the principal pathway involved in the apoptosis mediated by berberine in KB cells.
ERK↑,
MAPK↑,

2023- BBR,    Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor
- in-vitro, Colon, NA - in-vitro, Nor, YAMC
TumCD↑, Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells.
*toxicity↓, In contrast, YAMC(normal) cells were not sensitive to berberine-induced cell death. less cytotoxic effects on normal colon epithelial cells.
selectivity↑, see figure 2
ROS↑, berberine-stimulated ROS production
*ROS∅, ROS production in a concentration-dependent manner only in IMCE cells, but not in YAMC cells. In YAMC cells, berberine did not induce ROS production
MMP↓, berberine induced mitochondrial depolarization in a concentration-dependent manner in IMCE cells, but not in YAMC cells
*MMP∅, but not in YAMC cells
PARP↑, Berberine Activation of PARP
BioAv↝, absorption of berberine by YAMC is lower than that by IMCE cells

1404- BBR,    Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation
- in-vitro, Pca, PC3
Apoptosis↑,
*Apoptosis∅, not seen in non-neoplastic human prostate epithelial cells (PWR-1E)
MMP↓,
cl‑Casp3↑,
cl‑Casp9↑,
cl‑PARP↑,
ROS↑,
eff↓, Treatment of cells with allopurinol, an inhibitor of xanthine oxidase, inhibited berberine-induced oxidative stress in cancer cells.
Cyt‑c↑, release of cytochrome c

1402- BBR,    Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction
- in-vitro, GBM, T98G
tumCV↓,
ROS↑,
Ca+2↑,
ER Stress↑,
eff↓, administration of the antioxidants, N-acetylcysteine and glutathione, reversed berberine-induced apoptosis
Bax:Bcl2↑,
MMP↓,
Casp9↑,
Casp3↑,
cl‑PARP↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
APAF1↑,1,   Apoptosis↑,1,   BAD↑,1,   BAX↑,1,   Bax:Bcl2↑,1,   BioAv↝,1,   Ca+2↑,1,   Casp3↑,2,   cl‑Casp3↑,1,   Casp7↑,1,   Casp8↑,1,   Casp9↑,2,   cl‑Casp9↑,1,   Cyt‑c↑,1,   DNAdam↑,1,   eff↓,2,   ER Stress↑,1,   ERK↑,1,   FasL↑,1,   MAPK↑,1,   MMP↓,3,   MMP2↓,1,   MMP9↓,1,   p‑p38↑,1,   PARP↑,2,   cl‑PARP↑,2,   ROS↑,3,   selectivity↑,1,   TumCD↑,1,   tumCV↓,2,  
Total Targets: 30

Results for Effect on Normal Cells:
Apoptosis∅,1,   MMP∅,1,   ROS∅,1,   toxicity↓,1,  
Total Targets: 4

Scientific Paper Hit Count for: PARP, poly ADP-ribose polymerase (PARP) cleavage
4 Berberine
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:41  Target#:239  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page