condition found tbRes List
BBR, Berberine: Click to Expand ⟱
Features:
Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical.
Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways.

– Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein.
– Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects.

• Effective Dosage in Studies
– Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses.
– Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary.

-IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models)
-IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type
- In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg


-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK.
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI, FAK↓, ERK↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells



TumCI, Tumor Cell invasion: Click to Expand ⟱
Source:
Type:
Tumor cell invasion is a critical process in cancer progression and metastasis, where cancer cells spread from the primary tumor to surrounding tissues and distant organs. This process involves several key steps and mechanisms:

1.Epithelial-Mesenchymal Transition (EMT): Many tumors originate from epithelial cells, which are typically organized in layers. During EMT, these cells lose their epithelial characteristics (such as cell-cell adhesion) and gain mesenchymal traits (such as increased motility). This transition is crucial for invasion.

2.Degradation of Extracellular Matrix (ECM): Tumor cells secrete enzymes, such as matrix metalloproteinases (MMPs), that degrade the ECM, allowing cancer cells to invade surrounding tissues. This degradation facilitates the movement of cancer cells through the tissue.

3.Cell Migration: Once the ECM is degraded, cancer cells can migrate. They often use various mechanisms, including amoeboid movement and mesenchymal migration, to move through the tissue. This migration is influenced by various signaling pathways and the tumor microenvironment.

4.Angiogenesis: As tumors grow, they require a blood supply to provide nutrients and oxygen. Tumor cells can stimulate the formation of new blood vessels (angiogenesis) through the release of growth factors like vascular endothelial growth factor (VEGF). This not only supports tumor growth but also provides a route for cancer cells to enter the bloodstream.

5.Invasion into Blood Vessels (Intravasation): Cancer cells can invade nearby blood vessels, allowing them to enter the circulatory system. This step is crucial for metastasis, as it enables cancer cells to travel to distant sites in the body.

6.Survival in Circulation: Once in the bloodstream, cancer cells must survive the immune response and the shear stress of blood flow. They can form clusters with platelets or other cells to evade detection.

7.Extravasation and Colonization: After traveling through the bloodstream, cancer cells can exit the circulation (extravasation) and invade new tissues. They may then establish secondary tumors (metastases) in distant organs.

8.Tumor Microenvironment: The surrounding microenvironment plays a significant role in tumor invasion. Factors such as immune cells, fibroblasts, and signaling molecules can either promote or inhibit invasion and metastasis.


Scientific Papers found: Click to Expand⟱
2682- BBR,    Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions
- in-vitro, CRC, HT29 - in-vitro, CRC, SW480 - in-vitro, CRC, HCT116
TumCP↓, We demonstrated that treatment of these CRC cell lines with berberine inhibited cell proliferation, migration and invasion through induction of apoptosis and necrosis.
TumCMig↓,
TumCI↓,
Apoptosis↑,
necrosis↑,
AQPs↓, berberine treatment down-regulated the expression of all three types of AQPs.
PTEN↑, up-regulating PTEN and down-regulating PI3K, AKT and p-AKT expression as well as suppressing its downstream targets, mTOR and p-mTOR at the protein level
PI3K↓,
Akt↓,
p‑Akt↓,
mTOR↓,
p‑mTOR↓,

2694- BBR,    Berberine down-regulates IL-8 expression through inhibition of the EGFR/MEK/ERK pathway in triple-negative breast cancer cells
- in-vitro, BC, NA
IL8↓, BBR dramatically suppresses IL-8 expression.
TumCI↓, BBR also inhibited cell invasiveness
EGFR↓, BBR down-regulates EGFR protein expression and dose-dependently inhibits MEK and ERK phosphorylation.
MEK↓,
ERK↓,
TGF-β1↓, BBR inhibits the tumorigenic and angiogenic properties of TNBC cells by inhibiting TGF-β1 expression and VEGF secretion (
VEGF↓,

2678- BBR,    Berberine as a Potential Agent for the Treatment of Colorectal Cancer
- Review, CRC, NA
*Inflam↓, BBR exerts remarkable anti-inflammatory (94–96), antiviral (97), antioxidant (98), antidiabetic (99), immunosuppressive (100), cardiovascular (101, 102), and neuroprotective (103) activities.
*antiOx↑,
*cardioP↑,
*neuroP↑,
TumCCA↑, BBR could induce G1 cycle arrest in A549 lung cancer cells by decreasing the levels of cyclin D1 and cyclin E1
cycD1↓,
cycE↓,
CDC2↓, BBR also induced G1 cycle arrest by inhibiting cyclin B1 expression and CDC2 kinase in some cancer cells
AMPK↝, BBR has been suggested to induce autophagy in glioblastoma by targeting the AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR)/ULK1 pathway
mTOR↝,
Casp8↑, BBR has been revealed to stimulate apoptosis in leukemia by upregulation of caspase-8 and caspase-9
Casp9↑,
Cyt‑c↑, in skin squamous cell carcinoma A431 cells by increasing cytochrome C levels
TumCMig↓, BBR has been confirmed to inhibit cell migration and invasion by inhibiting the expression of epithelial–mesenchymal transition (EMT)
TumCI↓,
EMT↓,
MMPs↓, metastasis-related proteins, such as matrix metalloproteinases (MMPs) and E-cadherin,
E-cadherin↓,
Telomerase↓, BBR has shown antitumor effects by interacting with microRNAs (125) and inhibiting telomerase activity
*toxicity↓, Numerous studies have revealed that BBR is a safe and effective treatment for CRC
GRP78/BiP↓, Downregulates GRP78
EGFR↓, Downregulates EGFR
CDK4↓, downregulates CDK4, TERT, and TERC
COX2↓, Reduces levels of COX-2/PGE2, phosphorylation of JAK2 and STAT3, and expression of MMP-2/-9.
PGE2↓,
p‑JAK2↓,
p‑STAT3↓,
MMP2↓,
MMP9↓,
GutMicro↑, BBR can inhibit tumor growth through meditation of the intestinal flora and mucosal barrier, and generally and ultimately improve weight loss. BBR has been reported to modulate the composition of intestinal flora and significantly reduce flora divers
eff↝, BBR can regulate the activity of P-glycoprotein (P-gp), and potential drug-drug interactions (DDIs) are observed when BBR is coadministered with P-gp substrates
*BioAv↓, the efficiency of BBR is limited by its low bioavailability due to its poor absorption rate in the gut, low solubility in water, and fast metabolism. Studies have shown that the oral bioavailability of BBR is 0.68% in rats
BioAv↑, combining it with p-gp inhibitors (such as tariquidar and tetrandrine) (196, 198), and modification to berberine organic acid salts (BOAs)

2674- BBR,    Berberine: A novel therapeutic strategy for cancer
- Review, Var, NA - Review, IBD, NA
Inflam↓, anti-inflammatory, antidiabetic, antibacterial, antiparasitic, antidiarrheal, antihypertensive, hypolipidemic, and fungicide.
AntiCan↑, elaborated on the anticancer effects of BBR through the regulation of different molecular pathways such as: inducing apoptosis, autophagy, arresting cell cycle, and inhibiting metastasis and invasion.
Apoptosis↑,
TumAuto↑,
TumCCA↑,
TumMeta↓,
TumCI↓,
eff↑, BBR is shown to have beneficial effects on cancer immunotherapy.
eff↑, BBR inhibited the release of Interleukin 1 beta (IL-1β), Interferon gamma (IFN-γ), Interleukin 6 (IL-6), and Tumor Necrosis Factor-alpha (TNF-α) from LPS stimulated lymphocytes by acting as a dopamine receptor antagonist
CD4+↓, BBR inhibited the proliferation of CD4+ T cells and down-regulated TNF-α and IL-1 and thus, improved autoimmune neuropathy.
TNF-α↓,
IL1↓,
BioAv↓, On the other hand, P-Glycoprotein (P-gp), a secretive pump located in the epithelial cell membrane, restricts the oral bioavailability of a variety of medications, such as BBR. The use of P-gp inhibitors is a common and effective way to prevent this
BioAv↓, Regardless of its low bioavailability, BBR has shown great therapeutic efficacy in the treatment of a number of diseases.
other↓, BBR has been also used as an effective therapeutic agent for Inflammatory Bowel Disease (IBD) for several years
AMPK↑, inhibitory effects on inflammation by regulating different mechanisms such as 5′ Adenosine Monophosphate-Activated Protein Kinase (AMPK. Increase of AMPK
MAPK↓, Mitogen-Activated Protein Kinase (MAPK), and NF-κB signaling pathways
NF-kB↓,
IL6↓, inhibiting the expression of proinflammatory genes such as IL-1, IL-6, Monocyte Chemoattractant Protein 1 (MCP1), TNF-α, Prostaglandin E2 (PGE2), and Cyclooxygenase-2 (COX-2)
MCP1↓,
PGE2↓,
COX2↓,
*ROS↓, BBR protected PC-12 cells (normal) from oxidative damage by suppressing ROS through PI3K/AKT/mTOR signaling pathways
*antiOx↑, BBR therapy improved the antioxidant function of mice intestinal tissue by enhancing the levels of glutathione peroxidase and catalase enzymes.
*GPx↑,
*Catalase↑,
AntiTum↑, Besides, BBR leaves great antitumor effects on multiple types of cancer such as breast cancer,69 bladder cancer,70 hepatocarcinoma,71 and colon cancer.72
TumCP↓, BBR exerts its antitumor activity by inhibiting proliferation, inducing apoptosis and autophagy, and suppressing angiogenesis and metastasis
angioG↓,
Fas↑, by increasing the amounts of Fas receptor (death receptor)/FasL (Fas ligand), ROS, ATM, p53, Retinoblastoma protein (Rb), caspase-9,8,3, TNF-α, Bcl2-associated X protein (Bax), BID
FasL↑,
ROS↑,
ATM↑,
P53↑,
RB1↑,
Casp9↑,
Casp8↑,
Casp3↓,
BAX↑,
Bcl-2↓, and declining Bcl2, Bcl-X, c-IAP1 (inhibitor of apoptosis protein), X-linked inhibitor of apoptosis protein (XIAP), and Survivin levels
Bcl-xL↓,
IAP1↓,
XIAP↓,
survivin↓,
MMP2↓, Furthermore, BBR suppressed Matrix Metalloproteinase-2 (MMP-2), and MMP-9 expression.
MMP9↓,
CycB↓, Inhibition of cyclin B1, cdc2, cdc25c
CDC25↓,
CDC25↓,
Cyt‑c↑, BBR inhibited tumor cell proliferation and migration and induced mitochondria-mediated apoptosis pathway in Triple Negative Breast Cancer (TNBC) by: stimulating cytochrome c release from mitochondria to cytosol
MMP↓, decreased the mitochondrial membrane potential, and enabled cytochrome c release from mitochondria to cytosol
RenoP↑, BBR significantly reduced the destructive effects of cisplatin on the kidney by inhibiting autophagy, and exerted nephroprotective effects.
mTOR↓, U87 cell, Inhibition of m-TOR signaling
MDM2↓, Downregulation of MDM2
LC3II↑, Increase of LC3-II and beclin-1
ERK↓, BBR stimulated AMPK signaling, resulting in reduced extracellular signal–regulated kinase (ERK) activity and COX-2 expression in B16F-10 lung melanoma cells
COX2↓,
MMP3↓, reducing MMP-3 in SGC7901 GC and AGS cells
TGF-β↓, BBR suppressed the invasion and migration of prostate cancer PC-3 cells by inhibiting TGF-β-related signaling molecules which induced Epithelial-Mesenchymal Transition (EMT) such as Bone morphogenetic protein 7 (BMP7),
EMT↑,
ROCK1↓, inhibiting metastasis-associated proteins such as ROCK1, FAK, Ras Homolog Family Member A (RhoA), NF-κB and u-PA, leading to in vitro inhibition of MMP-1 and MMP-13.
FAK↓,
RAS↓,
Rho↓,
NF-kB↓,
uPA↓,
MMP1↓,
MMP13↓,
ChemoSen↑, recent studies have indicated that it can be used in combination with chemotherapy agents

2711- BBR,    Berberine inhibits the progression of breast cancer by regulating METTL3-mediated m6A modification of FGF7 mRNA
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
TumCP↓, BBR treatment hindered breast cancer cell proliferation, invasion, migration, and induced apoptosis
TumCI↓,
TumCMig↓,
Apoptosis↑,
FGF↓, FGF7 expression was upregulated in breast cancer tissues, while its level was reduced in BBR-treated tumor cells
IGFBP3↑, IGF2BP3 recognized the m6A modification of FGF7 mRNA and enhanced its expression

2709- BBR,    Berberine inhibits the glycolysis and proliferation of hepatocellular carcinoma cells by down-regulating HIF-1α
- in-vitro, HCC, HepG2
TumCP↓, After exposure to 100 μmol/L BBR, the proliferation, migration and invasion of HepG2 cells were reduced, along with apoptosis was increased, while the levels of glycolysis-related proteins were decreased
TumCMig↓,
TumCI↓,
Apoptosis↑,
Glycolysis↓, BBR inhibits proliferation and glycolysis of HCC cells in vivo
Hif1a↓, BBR can down-regulate HIF-1α in the hypoxic microenvironment, and hinder the proliferation and metastasis of breast cancer cell
GLUT1↓, treatment with 100μmol/L BBR for 48 h, the levels of GLUT1, HK2, PKM2, and LDHA mRNA were markedly reduced in HepG2 cells
HK2↓,
PKM2↓,
LDHA↓,

2702- BBR,    The enhancement of combination of berberine and metformin in inhibition of DNMT1 gene expression through interplay of SP1 and PDPK1
- in-vitro, Lung, A549 - in-vitro, Lung, H1975
TumCG↓, BBR inhibited growth of non-small cell lung cancer (NSCLC) cells through mitogen-activated protein kinase (MAPK)-mediated increase in forkhead box O3a (FOXO3a).
MAPK↓,
FOXO3↑,
TumCCA↑, BBR not only induced cell cycle arrest, but also reduced migration and invasion of NSCLC cells
TumCMig↓,
TumCI↓,
Sp1/3/4↓, BBR reduced 3-phosphoinositide-dependent protein kinase-1 (PDPK1) and transcription factor SP1 protein expressions.
PDK1↓, BBR reduced 3-phosphoinositide-dependent protein kinase-1
DNMT1↓, BBR inhibited DNA methyltransferase 1 (DNMT1) gene expression and overexpressed DNMT1 resisted BBR-inhibited cell growth
eff↑, Finally, metformin enhanced the effects of BBR both in vitro and in vivo.

2700- BBR,    Cell-specific pattern of berberine pleiotropic effects on different human cell lines
- in-vitro, GBM, U343 - in-vitro, GBM, MIA PaCa-2 - in-vitro, Nor, HDFa
selectivity↑, berberine differentially affects cell viability, displaying a higher cytotoxicity on the two cancer cell lines than on HDF
TumCCA↑, Berberine also affects cell cycle progression, senescence, caspase-3 activity, autophagy and migration in a cell-specific manner.
Casp3↑, it increases caspase-3 activity and impairs migration/invasion.
TumCI↓,
TumCMig↓,
N-cadherin?,
DNMT1↑, DNMT1 was also upregulated in U343 cells (4-fold) after 50 μM berberine for 48 hours and in MIA PaCa-2 cells after treatment with both 10 μM and 50 μM berberine for 48 hours (5-fold and 15-fold, respectively).

1102- BBR,    Berberine suppressed epithelial mesenchymal transition through cross-talk regulation of PI3K/AKT and RARα/RARβ in melanoma cells
- in-vitro, Melanoma, B16-BL6
TumCMig↓,
TumCI↓,
EMT↓,
p‑PI3K↓,
p‑Akt↓,
RARα↓,
RARβ↑,
RARγ↑,
E-cadherin↑,
N-cadherin↓,

1092- BBR,    Berberine as a Potential Anticancer Agent: A Comprehensive Review
- Review, NA, NA
Apoptosis↑,
TumCCA↑,
TumAuto↑,
TumCI↓,
IL1↓, IL-1α, IL-1β
IL6↓,
TNF-α↓,
LDH↓, BBR also increases the release of Lactic Acid Dehydrogenase (LDH) in the MDA epithelial human breast cancer cell line (MDA-cells)
P2X7↓,
proCasp1↓,
Casp1↓,
ASC↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 10

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   p‑Akt↓,2,   AMPK↑,1,   AMPK↝,1,   angioG↓,1,   AntiCan↑,1,   AntiTum↑,1,   Apoptosis↑,5,   AQPs↓,1,   ASC↓,1,   ATM↑,1,   BAX↑,1,   Bcl-2↓,1,   Bcl-xL↓,1,   BioAv↓,2,   BioAv↑,1,   Casp1↓,1,   proCasp1↓,1,   Casp3↓,1,   Casp3↑,1,   Casp8↑,2,   Casp9↑,2,   CD4+↓,1,   CDC2↓,1,   CDC25↓,2,   CDK4↓,1,   ChemoSen↑,1,   COX2↓,3,   CycB↓,1,   cycD1↓,1,   cycE↓,1,   Cyt‑c↑,2,   DNMT1↓,1,   DNMT1↑,1,   E-cadherin↓,1,   E-cadherin↑,1,   eff↑,3,   eff↝,1,   EGFR↓,2,   EMT↓,2,   EMT↑,1,   ERK↓,2,   FAK↓,1,   Fas↑,1,   FasL↑,1,   FGF↓,1,   FOXO3↑,1,   GLUT1↓,1,   Glycolysis↓,1,   GRP78/BiP↓,1,   GutMicro↑,1,   Hif1a↓,1,   HK2↓,1,   IAP1↓,1,   IGFBP3↑,1,   IL1↓,2,   IL6↓,2,   IL8↓,1,   Inflam↓,1,   p‑JAK2↓,1,   LC3II↑,1,   LDH↓,1,   LDHA↓,1,   MAPK↓,2,   MCP1↓,1,   MDM2↓,1,   MEK↓,1,   MMP↓,1,   MMP1↓,1,   MMP13↓,1,   MMP2↓,2,   MMP3↓,1,   MMP9↓,2,   MMPs↓,1,   mTOR↓,2,   mTOR↝,1,   p‑mTOR↓,1,   N-cadherin?,1,   N-cadherin↓,1,   necrosis↑,1,   NF-kB↓,2,   other↓,1,   P2X7↓,1,   P53↑,1,   PDK1↓,1,   PGE2↓,2,   PI3K↓,1,   p‑PI3K↓,1,   PKM2↓,1,   PTEN↑,1,   RARα↓,1,   RARβ↑,1,   RARγ↑,1,   RAS↓,1,   RB1↑,1,   RenoP↑,1,   Rho↓,1,   ROCK1↓,1,   ROS↑,1,   selectivity↑,1,   Sp1/3/4↓,1,   p‑STAT3↓,1,   survivin↓,1,   Telomerase↓,1,   TGF-β↓,1,   TGF-β1↓,1,   TNF-α↓,2,   TumAuto↑,2,   TumCCA↑,5,   TumCG↓,1,   TumCI↓,10,   TumCMig↓,7,   TumCP↓,4,   TumMeta↓,1,   uPA↓,1,   VEGF↓,1,   XIAP↓,1,  
Total Targets: 117

Results for Effect on Normal Cells:
antiOx↑,2,   BioAv↓,1,   cardioP↑,1,   Catalase↑,1,   GPx↑,1,   Inflam↓,1,   neuroP↑,1,   ROS↓,1,   toxicity↓,1,  
Total Targets: 9

Scientific Paper Hit Count for: TumCI, Tumor Cell invasion
10 Berberine
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:41  Target#:324  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page