condition found tbRes List
BBR, Berberine: Click to Expand ⟱
Features:
Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical.
Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways.

– Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein.
– Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects.

• Effective Dosage in Studies
– Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses.
– Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary.

-IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models)
-IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type
- In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg


-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK.
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells



cMyc, cellular-MYC oncogene: Click to Expand ⟱
Source:
Type: oncogene
The MYC proto-oncogenes are among the most commonly activated proteins in human cancer. The oncogene c-myc, which is frequently over-expressed in cancer cells, is involved in the transactivation of most of the glycolytic enzymes including lactate dehydrogenase A (LDHA) and the glucose transporter GLUT1 [51,52]. Thus, c-myc activation is a likely candidate to promote the enhanced glucose uptake and lactate release in the proliferating cancer cell. The c-Myc oncogene is a ‘master regulator’ of both cellular growth and metabolism in transformed cells.
-C-myc is a common oncogene that enhances aerobic glycolysis in the cancer cells by transcriptionally activating GLUT1, HK2, PKM2 and LDH-A

Inhibitors (downregulate):
Curcumin
Resveratrol: downregulate c-Myc expression.
Epigallocatechin Gallate (EGCG)
Quercetin
Berberine: decrease c-Myc expression and repress its transcriptional activity.


Scientific Papers found: Click to Expand⟱
2712- BBR,    Suppression of colon cancer growth by berberine mediated by the intestinal microbiota and the suppression of DNA methyltransferases (DNMTs)
- in-vitro, Colon, HT29 - in-vivo, NA, NA
TumCG↓, BBR reduced the growth of colon cancer cells to a certain extent in vitro and in vivo,
GutMicro↑, BBR significantly mediated the abundance, composition and metabolic functions of the intestinal microbial flora in mice with colon cancer
other↝, The effect of BBR on inflammatory cytokines, including IL-6, FGF, and PDGF, was not obvious
IL10↓, BBR significantly downregulated IL-10 levels (P < 0.05) and reduced c-Myc, DNMT1, and DNMT3B
cMyc↓,
DNMT1↓,
DNMTs↓,

2706- BBR,    Berberine Inhibits Growth of Liver Cancer Cells by Suppressing Glutamine Uptake
- in-vitro, HCC, Hep3B - in-vitro, HCC, Bel-7402 - in-vivo, NA, NA
TumCP↓, Berberine inhibited the proliferation of Hep3B and BEL-7404 cell in vitro
glut↓, Berberine suppressed the glutamine uptake by inhibiting SLC1A5.
SLC12A5↓,
cMyc↓, Berberine suppresses SLC1A5 expression by inhibiting c-Myc
GLS↓, The expression of SLC1A5, GLS and PSPH decreased, and such decrease was enhanced with the increase in berberine dose

1299- BBR,    Effects of Berberine and Its Derivatives on Cancer: A Systems Pharmacology Review
- Review, NA, NA
TumCCA↑, G1 phase, G0/G1 phase, or G2/M phase
TP53↑,
COX2↓,
Bax:Bcl2↑,
ROS↑,
VEGFR2↓,
Akt↓,
ERK↓,
MMP2↓, Berberine also decreased MMP-2, MMP-9, E-cadherin, EGF, bFGF, and fibronectin in the breast cancer cells.
MMP9↓,
IL8↑,
P21↑,
p27↑,
E-cadherin↓,
Fibronectin↓,
cMyc↓, The results indicated that these derivatives could selectively induce and stabilize the formation of the c-myc in the parallel molecular G-quadruplex. Accordingly, transcription of c-myc was down-regulated in the cancer cell line

2021- BBR,    Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways
- Review, NA, NA
*antiOx?, Berberine has been noted as a potential therapeutic candidate for liver fibrosis due to its antioxidant and anti-inflammatory activities
*Inflam↓,
Apoptosis↑, Apoptosis induced by berberine in liver cancer cells caused cell cycle arrest at the M/G1 phase and increased the Bax expression
TumCCA↑,
BAX↑,
eff↑, mixture of curcumin and berberine effectively decreases growth in breast cancer cell lines
VEGF↓, berberine also prevented the expression of VEGF
PI3K↓, berberine plays an important role in cancer management through inhibition of the PI3K/AKT/mTOR pathway
Akt↓,
mTOR↓,
Telomerase↓, Berberine decreased the telomerase activity and level of the colorectal cancer cell line,
β-catenin/ZEB1↓, berberine and its derivatives have the ability to inhibit β-catenin/Wnt signaling in tumorigenesis
Wnt↓,
EGFR↓, berberine treatment decreased cell proliferation and epidermal growth factor receptor expression levels in the xenograft model.
AP-1↓, Berberine efficiently targets both the host and the viral factors accountable for cervical cancer development via inhibition of activating protein-1
NF-kB↓, berberine inhibited lung cancer cell growth by concurrently targeting NF-κB/COX-2, PI3K/AKT, and cytochrome-c/caspase signaling pathways
COX2↑,
NRF2↓, Berberine suppresses the Nrf2 signaling-related protein expression in HepG2 and Huh7 cells,
RadioS↑, suggesting that berberine supports radiosensitivity through suppressing the Nrf2 signaling pathway in hepatocellular carcinoma cells
STAT3↓, regulating the JAK–STAT3 signaling pathway
ERK↓, berberine prevented the metastatic potential of melanoma cells via a reduction in ERK activity, and the protein levels of cyclooxygenase-2 by a berberine-caused AMPK activation
AR↓, Berberine reduced the androgen receptor transcriptional activity
ROS↑, In a study on renal cancer, berberine raised the levels of autophagy and reactive oxygen species in human renal tubular epithelial cells derived from the normal kidney HK-2 cell line, in addition to human cell lines ACHN and 786-O cell line.
eff↑, berberine showed a greater apoptotic effect than gemcitabine in cancer cells
selectivity↑, After berberine treatment, it was noticed that berberine showed privileged selectivity towards cancer cells as compared to normal ones.
selectivity↑, expression of caspase-1 and its downstream target Interleukin-1β (IL-1β) was higher in osteosarcoma cells as compared to normal cells
BioAv↓, several studies have been undertaken to overcome the difficulties of low absorption and poor bioavailability through nanotechnology-based strategies.
DNMT1↓, In human multiple melanoma cell U266, berberine can inhibit the expression of DNMT1 and DNMT3B, which leads to hypomethylation of TP53 by altering the DNA methylation level and the p53-dependent signal pathway
cMyc↓, Moreover, berberine suppresses SLC1A5, Na+ dependent transporter expression through preventing c-Myc


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
Akt↓,2,   AP-1↓,1,   Apoptosis↑,1,   AR↓,1,   BAX↑,1,   Bax:Bcl2↑,1,   BioAv↓,1,   cMyc↓,4,   COX2↓,1,   COX2↑,1,   DNMT1↓,2,   DNMTs↓,1,   E-cadherin↓,1,   eff↑,2,   EGFR↓,1,   ERK↓,2,   Fibronectin↓,1,   GLS↓,1,   glut↓,1,   GutMicro↑,1,   IL10↓,1,   IL8↑,1,   MMP2↓,1,   MMP9↓,1,   mTOR↓,1,   NF-kB↓,1,   NRF2↓,1,   other↝,1,   P21↑,1,   p27↑,1,   PI3K↓,1,   RadioS↑,1,   ROS↑,2,   selectivity↑,2,   SLC12A5↓,1,   STAT3↓,1,   Telomerase↓,1,   TP53↑,1,   TumCCA↑,2,   TumCG↓,1,   TumCP↓,1,   VEGF↓,1,   VEGFR2↓,1,   Wnt↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 45

Results for Effect on Normal Cells:
antiOx?,1,   Inflam↓,1,  
Total Targets: 2

Scientific Paper Hit Count for: cMyc, cellular-MYC oncogene
4 Berberine
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:41  Target#:35  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page