condition found tbRes List
BBR, Berberine: Click to Expand ⟱
Features:
Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical.
Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways.

– Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein.
– Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects.

• Effective Dosage in Studies
– Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses.
– Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary.

-IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models)
-IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type
- In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg


-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK.
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells



Ca+2, Calcium Ion Ca+2: Click to Expand ⟱
Source:
Type:
In all eukaryotic cells, intracellular Ca2+ levels are maintained at low resting concentrations (approximately 100 nM) by the activity of the major Ca2+ extrusion system, the plasma membrane Ca2+-ATPase (PMCA), which exchanges extracellular protons (H+) for cytosolic Ca2+.
Indeed, sustained elevation of [Ca2+]C in the form of overload, saturating all Ca2+-dependent effectors, prolonged decrease in [Ca2+]ER, causing ER stress response, and high [Ca2+]M, inducing mitochondrial permeability transition (MPT), are considered to be pro-death factors.
In cancer the Ca2+-handling toolkit undergoes profound remodelling (figure 1) to favour activation of Ca2+-dependent transcription factors, such as the nuclear factor of activated T cells (NFAT), c-Myc, c-Jun, c-Fos that promote hypertrophic growth via induction of the expression of the G1 and G1/S phase transition cyclins (D and E) and associated cyclin-dependent kinases (CDK4 and CDK2).
Thus, cancer cells may evade apoptosis through decreasing calcium influx into the cytoplasm. This can be achieved by either downregulation of the expression of plasma membrane Ca2+-permeable ion channels or by reducing the effectiveness of the signalling pathways that activate these channels. Such protective measures would largely diminish the possibility of Ca2+ overload in response to pro-apoptotic stimuli, thereby impairing the effectiveness of mitochondrial and cytoplasmic apoptotic pathways.
Voltage-Gated Calcium Channels (VGCCs): Overexpression of VGCCs has been associated with increased tumor growth and metastasis in various cancers, including breast and prostate cancer.
Store-Operated Calcium Entry (SOCE): SOCE mechanisms, such as STIM1 and ORAI1, are often upregulated in cancer cells, contributing to enhanced cell survival and proliferation.
High intracellular calcium levels are associated with increased cell proliferation and migration, leading to a poorer prognosis. Calcium signaling can also influence hormone receptor status, affecting treatment responses.
Increased Ca²⁺ signaling is associated with advanced disease and metastasis. Patients with higher CaSR expression may have a worse prognosis due to enhanced tumor growth and resistance to apoptosis. -Ca2+ is an important regulator of the electric charge distribution of bio-membranes.


Scientific Papers found: Click to Expand⟱
2689- BBR,    Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells
- in-vitro, Nor, PC12 - in-vitro, AD, NA - in-vitro, Stroke, NA
*ROS↓, In both cell lines, pretreatment with berberine (especially at low concentrations) significantly decreased ROS generation, lipid peroxidation, and DNA fragmentation, while improving glutathione content and SOD activity in glutamate-injured cells.
*lipid-P↓,
*DNAdam↓, Berberine significantly diminished glutamate-induced DNA fragmentation
*GSH↑,
*SOD↑,
*eff↑, This is relevant to berberine treatment in neurodegenerative disorders, such as dementia (Alzheimer’s disease), seizures, and stroke.
*cl‑Casp3↓, Berberine significantly decreased cleaved caspase-3 and bax/bcl-2 expressions in the glutamate-injured cells
*BAX↓,
*neuroP↑, the current study demonstrated that berberine exerts neuroprotective effects against glutamate-induced N2a and PC12 cytotoxicity via antioxidant and anti-apoptotic mechanisms
*Dose↝, the protective effect of berberine was more significant at lower concentrations and decreased with increasing concentration.
*Ca+2↓, Nadjafi et al demonstrated that berberine protects OLN-93 oligodendrocytes against ischemic-induced cell death by attenuating the intracellular Ca2+ overload similar to the NMDA or the AMPA/kainate receptors antagonists

2684- BBR,    Berberine is a Novel Mitochondrial Calcium Uniporter Inhibitor that Disrupts MCU‐EMRE Assembly
- in-vivo, Nor, NA
*MCU↓, These findings establish Berberine as a potent MCU inhibitor, offering a safe therapeutic strategy for diseases associated with dysregulated mitochondrial calcium homeostasis.
*mt-Ca+2↓, Berberine pretreatment reduces mitochondrial Ca2+ overload and mitigates ischemia/reperfusion‐induced myocardial injury in mice.
*cardioP↑, Berberine significantly reduces mitochondrial Ca2+ overload, providing cardioprotection against I/R‐induced myocardial injury in mice.

2670- BBR,    Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases
- Review, Var, NA
*Inflam↓, According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity
*antiOx↑,
*Ca+2↓, Impaired cerebral arterial vasodilation can be alleviated by berberine in a diabetic rat model via down-regulation of the intracellular Ca2+ processing of VSMCs
*BioAv↓, poor oral absorption and low bioavailability
*BioAv↑, Conversion of biological small molecules into salt compounds may be a method to improve its bioavailability in vivo.
*BioAv↑, Long-chain alkylation (C5-C9) may enhance hydrophobicity, which has been shown to improve bioavailability; for example, 9-O-benzylation further enhances lipophilicity and imparts neuroprotective effect
*angioG↑, figure 2
*MAPK↓,
*AMPK↓, 100 mg/kg berberine daily for 14 days attenuated ischemia–reperfusion injury via hemodynamic improvements and inhibition of AMPK activity in both non-ischemic and ischemic areas of rat heart tissue
*NF-kB↓,
VEGF↓,
PI3K↓,
Akt↓,
MMP2↓,
Bcl-2↓,
ERK↓,

1379- BBR,    Berberine derivative DCZ0358 induce oxidative damage by ROS-mediated JNK signaling in DLBCL cells
- in-vitro, lymphoma, NA
TumCP↓,
CDK4↓,
CDK6↓,
cycD1↓,
TumCCA↑, G0/G1 phase
MMP↓,
Ca+2↑,
ATP↓, decreased intracellular adenosine triphosphate production,
mtDam↑, mitochondrial dysfunction
Apoptosis↑,
ROS↑,
JNK↑,
eff↓, treatment with ROS scavenger N-acetylcysteine (NAC) and JNK inhibitor SP600125 could partially attenuate apoptosis and DNA damage triggered by DCZ0358.

1402- BBR,    Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction
- in-vitro, GBM, T98G
tumCV↓,
ROS↑,
Ca+2↑,
ER Stress↑,
eff↓, administration of the antioxidants, N-acetylcysteine and glutathione, reversed berberine-induced apoptosis
Bax:Bcl2↑,
MMP↓,
Casp9↑,
Casp3↑,
cl‑PARP↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   Apoptosis↑,1,   ATP↓,1,   Bax:Bcl2↑,1,   Bcl-2↓,1,   Ca+2↑,2,   Casp3↑,1,   Casp9↑,1,   CDK4↓,1,   CDK6↓,1,   cycD1↓,1,   eff↓,2,   ER Stress↑,1,   ERK↓,1,   JNK↑,1,   MMP↓,2,   MMP2↓,1,   mtDam↑,1,   cl‑PARP↑,1,   PI3K↓,1,   ROS↑,2,   TumCCA↑,1,   TumCP↓,1,   tumCV↓,1,   VEGF↓,1,  
Total Targets: 25

Results for Effect on Normal Cells:
AMPK↓,1,   angioG↑,1,   antiOx↑,1,   BAX↓,1,   BioAv↓,1,   BioAv↑,2,   Ca+2↓,2,   mt-Ca+2↓,1,   cardioP↑,1,   cl‑Casp3↓,1,   DNAdam↓,1,   Dose↝,1,   eff↑,1,   GSH↑,1,   Inflam↓,1,   lipid-P↓,1,   MAPK↓,1,   MCU↓,1,   neuroP↑,1,   NF-kB↓,1,   ROS↓,1,   SOD↑,1,  
Total Targets: 22

Scientific Paper Hit Count for: Ca+2, Calcium Ion Ca+2
5 Berberine
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:41  Target#:38  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page