condition found
Features: |
Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical. Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways. – Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein. – Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects. • Effective Dosage in Studies – Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses. – Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary. -IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models) -IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type - In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg -Note half-life reports vary 2.5-90hrs?. -low solubility of apigenin in water : BioAv Pathways: - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ - Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK. - inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
In all eukaryotic cells, intracellular Ca2+ levels are maintained at low resting concentrations (approximately 100 nM) by the activity of the major Ca2+ extrusion system, the plasma membrane Ca2+-ATPase (PMCA), which exchanges extracellular protons (H+) for cytosolic Ca2+. Indeed, sustained elevation of [Ca2+]C in the form of overload, saturating all Ca2+-dependent effectors, prolonged decrease in [Ca2+]ER, causing ER stress response, and high [Ca2+]M, inducing mitochondrial permeability transition (MPT), are considered to be pro-death factors. In cancer the Ca2+-handling toolkit undergoes profound remodelling (figure 1) to favour activation of Ca2+-dependent transcription factors, such as the nuclear factor of activated T cells (NFAT), c-Myc, c-Jun, c-Fos that promote hypertrophic growth via induction of the expression of the G1 and G1/S phase transition cyclins (D and E) and associated cyclin-dependent kinases (CDK4 and CDK2). Thus, cancer cells may evade apoptosis through decreasing calcium influx into the cytoplasm. This can be achieved by either downregulation of the expression of plasma membrane Ca2+-permeable ion channels or by reducing the effectiveness of the signalling pathways that activate these channels. Such protective measures would largely diminish the possibility of Ca2+ overload in response to pro-apoptotic stimuli, thereby impairing the effectiveness of mitochondrial and cytoplasmic apoptotic pathways. Voltage-Gated Calcium Channels (VGCCs): Overexpression of VGCCs has been associated with increased tumor growth and metastasis in various cancers, including breast and prostate cancer. Store-Operated Calcium Entry (SOCE): SOCE mechanisms, such as STIM1 and ORAI1, are often upregulated in cancer cells, contributing to enhanced cell survival and proliferation. High intracellular calcium levels are associated with increased cell proliferation and migration, leading to a poorer prognosis. Calcium signaling can also influence hormone receptor status, affecting treatment responses. Increased Ca²⁺ signaling is associated with advanced disease and metastasis. Patients with higher CaSR expression may have a worse prognosis due to enhanced tumor growth and resistance to apoptosis. -Ca2+ is an important regulator of the electric charge distribution of bio-membranes. |
2689- | BBR,  |   | Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells |
- | in-vitro, | Nor, | PC12 | - | in-vitro, | AD, | NA | - | in-vitro, | Stroke, | NA |
2684- | BBR,  |   | Berberine is a Novel Mitochondrial Calcium Uniporter Inhibitor that Disrupts MCU‐EMRE Assembly |
- | in-vivo, | Nor, | NA |
2670- | BBR,  |   | Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases |
- | Review, | Var, | NA |
1379- | BBR,  |   | Berberine derivative DCZ0358 induce oxidative damage by ROS-mediated JNK signaling in DLBCL cells |
- | in-vitro, | lymphoma, | NA |
1402- | BBR,  |   | Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction |
- | in-vitro, | GBM, | T98G |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:41 Target#:38 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid