Bor, Boron: Click to Expand ⟱
Features: micronutrient
Boron is a trace mineral.
Used in treating yeast infections, improving athletic performance, or preventing osteoporosis.

Current research suggests that boric acid can modulate intercellular calcium levels—with potential implications for cancer therapy—by:
-Altering calcium channel activity and calcium influx,
-Modifying downstream calcium-dependent signaling, and
-Inducing apoptotic pathways preferentially in cancer cells due to their altered calcium handling dynamics.
Abnormal increases in [Ca²⁺]ᵢ can trigger mitochondrial dysfunction and activate calcium-dependent apoptotic pathways. Boric acid has been observed in some cell culture studies to induce apoptosis in cancer cells.
In normal cells, modest changes in [Ca²⁺]ᵢ induced by boric acid may not reach a threshold that triggers apoptosis or other stress responses. This could lead to a relative sparing of normal cells compared to cancer cells.

Pathways:
1.Calcium Signaling Pathway
In many cases, boron appears to normalize dysregulated calcium levels in cancer cells, often leading to an increase in calcium levels that can trigger calcium-dependent apoptotic pathways. 2.Apoptotic Pathways (Intrinsic and Extrinsic).
Direction of Modulation:
• Boron compounds may enhance the activation of apoptotic cascades.
• Typically, an increase in intracellular calcium (as noted above) can further lead to mitochondrial dysfunction, cytochrome c release, and subsequent caspase activation, thereby promoting apoptosis.
3.PI3K/AKT/mTOR Pathway
• Some studies indicate that boron-containing compounds can inhibit this pathway.
• Inhibition of PI3K/AKT/mTOR signaling reduces survival signals and can decrease cellular proliferation and growth in tumor cell.
4.MAPK/ERK Pathway
Boron may modulate the MAPK/ERK cascade by either dampening overactive mitogenic signals or altering the stress response.
• This modulation can lead to reduced proliferation signals and may promote cell cycle arrest in cancer cells.
5.NF-κB Signaling Pathway
• Some reports indicate that boron compounds can suppress NF-κB activity.
• This suppression might be achieved indirectly through modulation of upstream signals (such as changes in calcium or the cellular redox status) leading to decreased transcription of pro-survival and pro-inflammatory genes.
6.Wnt/β-Catenin Pathway
• Inhibition of Wnt/β-catenin signaling may interfere with proliferation and the maintenance of cancer stem cell populations.

ROS:
-ROS induction may be dose related.
-Some studies report that when boron compounds are combined with other treatments (like chemotherapy or radiotherapy), there is a synergistic increase in ROS generation.
Boron’s effects in a cancer context generally lean toward:
• Normalizing dysregulated calcium signaling to push cells toward apoptotic death
• Inhibiting pro-survival pathways such as PI3K/AKT/mTOR and NF-κB

(1) is essential for the growth and maintenance of bone;
(2) greatly improves wound healing;
(3) beneficially impacts the body's use of estrogen, testosterone, and vitamin D;
(4) boosts magnesium absorption;
(5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α);
(6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase;
(7) protects against pesticide-induced oxidative stress and heavy-metal toxicity;
(8) improves the brains electrical activity, cognitive performance, and short-term memory for elders;
(9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD(+));
(10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin's lymphoma; and
(11) may help ameliorate the adverse effects of traditional chemotherapeutic agents.

-Note half-life 21 hrs average
BioAv very high, 85-100%
Pathways:
- induce ROS productionin cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑,(contrary) Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,(contrary) HSP↓,
- Debateable if Lowers AntiOxidant defense in Cancer Cells: NRF2↓(most contrary), SOD↓(some contrary), GSH↓, Catalase↓(some contrary), HO1↓(contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, IGF-1↓, VEGF↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, HSP↓,
- some indication of Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓,
- small indication of inhibiting glycolysis : HIF-1α↓, cMyc↓, GRP78↑, Glucose↓,
- small indication of inhibiting angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Scientific Papers found: Click to Expand⟱
757- Bor,    Phenylboronic acid is a more potent inhibitor than boric acid of key signaling networks involved in cancer cell migration
- in-vitro, Pca, DU145 - in-vitro, Nor, RWPE-1
Rho↓, Rac1↓, Cdc42↓, *eff↑,
3502- Bor,    Plasma boron concentrations in the general population: a cross-sectional analysis of cardio-metabolic and dietary correlates
- Review, NA, NA
*Half-Life↑, *VitD↑, *cardioP↑, *RenoP↓,
768- Bor,    In vitro and in vivo antitumour effects of phenylboronic acid against mouse mammary adenocarcinoma 4T1 and squamous carcinoma SCCVII cells
- in-vitro, BC, 4T1
TumCP↓,
767- Bor,    Boric acid induces cytoplasmic stress granule formation, eIF2α phosphorylation, and ATF4 in prostate DU-145 cells
- in-vitro, Pca, DU145
ER Stress↑, eIF2α↑, GRP78/BiP↑, ATF4↑,
766- Bor,    In vitro effects of boric acid on human liver hepatoma cell line (HepG2) at the half-maximal inhibitory concentration
- in-vitro, Liver, HepG2
TumCCA↑, DNAdam↑, Apoptosis↑,
765- Bor,    High concentrations of boric acid induce autophagy in cancer cell lines
p62↓, LC3II↑, TumAuto↑,
764- Bor,    Effect of Tumor Microenvironment on Selective Uptake of Boric Acid in HepG2 Human Hepatoma Cells
- in-vitro, Liver, HepG2
BioAv↑,
763- Bor,    Investigation of The Apoptotic and Antiproliferative Effects of Boron on CCL-233 Human Colon Cancer Cells
- in-vitro, Colon, CCl233
TumCP↓, PARP↓, VEGF↓,
762- Bor,    Mechanism of boric acid cytotoxicity in breast cancer cell lines
- in-vitro, BC, MCF-7 - in-vitro, BC, ZR-75-1
TumCG↓,
761- Bor,    Prevalence of Prostate Cancer in High Boron-Exposed Population: A Community-Based Study
other↓,
760- Bor,    Therapeutic Efficacy of Boric Acid Treatment on Brain Tissue and Cognitive Functions in Rats with Experimental Alzheimer’s Disease
- in-vivo, AD, NA
*memory↑, *ROS↓, *GSH↑, *Aβ↓, *Inflam↓, *MMP↑, *lipid-P↓, *Ca+2↓, *cognitive↑, *TOS↓,
759- Bor,    The nutritional and metabolic effects of boron in humans and animals
- in-vivo, NA, NA
DHT↑, VitD↑, HDL↓,
758- Bor,    Comparative effects of daily and weekly boron supplementation on plasma steroid hormones and proinflammatory cytokines
- Human, NA, NA
*hs-CRP↓, *TNF-α↓, *SHBG↓, *DHT↑, *cortisol↑, *VitD↑, *BioAv↑, *Inflam↓,
3503- Bor,    Chemical disposition of boron in animals and humans
- Review, NA, NA
*Half-Life↑, *other↑,
756- Bor,    Evaluation of Boric Acid Treatment on microRNA‐127‐5p and Metastasis Genes Orchestration of Breast Cancer Stem Cells
- in-vitro, BC, MCF-7
COL1A1↓, Vim↓, miR-127-5p↑, Zeb1↑, CDH1↑, ITGB1↑, ITGA5↑, LAMA5↑, Snail↑,
755- Bor,    https://aacrjournals.org/cancerres/article/67/9_Supplement/4220/535557/Boric-acid-induces-apoptosis-in-both-prostate-and
- in-vitro, Pca, DU145 - in-vitro, PC, PC3
TumCG↓, Apoptosis↑,
754- Bor,  HRT,    Dietary Boron and Hormone Replacement Therapy as Risk Factors for Lung Cancer in Women
- Analysis, NA, NA
Risk↓,
753- Bor,    Boron Intake and decreased risk of mortality in kidney transplant recipients
OS↑,
752- Bor,    The Potential Role of Boron in the Modulation of Gut Microbiota Composition: An In Vivo Pilot Study
GutMicro↑,
751- Bor,  5-FU,    Cytotoxic and Apoptotic Effects of the Combination of Borax (Sodium Tetraborate) and 5-Fluorouracil on DLD-1 Human Colorectal Adenocarcinoma Cell Line
- in-vitro, CRC, DLD1
Apoptosis↑,
750- Bor,    Calcium fructoborate regulate colon cancer (Caco-2) cytotoxicity through modulation of apoptosis
- in-vitro, CRC, Caco-2
Bcl-2↓, BAX↑, Akt↓, p70S6↓, PTEN↑, TSC2↑,
749- Bor,    Comparative effects of boric acid and calcium fructoborate on breast cancer cells
P53↓, Bcl-2↓, Casp3↑, Apoptosis↑,
748- Bor,    A Study on the Anticarcinogenic Effects of Calcium Fructoborate
- in-vitro, BC, MDA-MB-231
p‑ATM↑, p‑P53↑, Casp9↑, PARP↓, VEGF↓, Casp3↑,
747- Bor,    Growing Evidence for Human Health Benefits of Boron
- Review, NA, NA
TumCG↓, Risk↓,
746- Bor,    Organoboronic acids/esters as effective drug and prodrug candidates in cancer treatments: challenge and hope
- Review, NA, NA
eff↑, *toxicity↓, ROS↑, LAT↓, AntiCan↑, AR↓, PSMB5↓, IGF-1↓, PSA↓, TumVol↓, eff↑, Rho↓, Cdc42↓, Ca+2↓, eff↑,
3515- Bor,    EVIDENCE THAT BORON DOWN-REGULATES INFLAMMATION THROUGH THE NF-(KAPPA)B PATHWAY
- in-vitro, Nor, NA
*TNF-α↓, *IL1β↓, *MIP‑1α↓, *iNOS↓, *NF-kB↓,
3527- Bor,    The potential role of borophene as a radiosensitizer in boron neutron capture therapy (BNCT) and particle therapy (PT)
- NA, Var, NA
RadioS↑,
3525- Bor,    Synthesis of DNA-Boron Cluster Composites and Assembly into Functional Nanoparticles with Dual, Anti-EGFR, and Anti-c-MYC Oncogene Silencing Activity
- in-vitro, PC, PANC1
EGFR↓, cMyc↓,
3524- Bor,    Boric Acid Alleviates Lipopolysaccharide-Induced Acute Lung Injury in Mice
*Inflam↓, *SOD↑, *MDA↓, *GRP78/BiP↓, *CHOP↓, *NRF2↑, *HO-1↑,
3523- Bor,    Design, Synthesis, and Biological Activity of Boronic Acid-Based Histone Deacetylase Inhibitors
- in-vitro, Var, NA
HDAC↓,
3522- Bor,    The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry
- Review, Var, NA
Hif1a↓, HDAC↓, *CXCR2↑, ROS↑,
3521- Bor,    A new hope for obesity management: Boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway
- in-vitro, Obesity, 3T3
*CEBPA↓, *PPARγ↓, *FASN↓, *SREBP1↓, *FABP4↓, *GLUT4↓, *β-catenin/ZEB1↑, *MMP2↓, *FGF↑, *Ca+2?,
3520- Bor,    Effect of boron element on photoaging in rats
- in-vivo, NA, NA
*hepatoP↑, *BMD↑, *COX2↓, *IL8↓, *NF-kB↓, *IL6↓, *TNF-α↓,
3519- Bor,    Boron-Based Inhibitors of the NLRP3 Inflammasome
- Review, NA, NA
NLRP3↓,
3518- Bor,    Boron Report
- Review, Var, NA - Review, AD, NA
Risk↓, serineP↓, PSA↓, TumVol↓, IGF-1↓, *Mag↑, *Calcium↑, *VitD↑, *COX2↓, *5LO↓, *PGE2↓, *NF-kB↓, *cognitive↑,
3517- Bor,  Se,    The protective effects of selenium and boron on cyclophosphamide-induced hepatic oxidative stress, inflammation, and apoptosis in rats
- in-vivo, Nor, NA
*hepatoP↑, *ALAT↓, *AST↓, *ALP↓, *NF-kB↓, *TNF-α↓, *IL1β↓, *IL6↓, *IL10↑, *SOD↑, *Catalase↑, *MDA↓, *GSH↑, *GPx↑, *antiOx↑, *NRF2↑, *Keap1↓,
3516- Bor,    Boron in wound healing: a comprehensive investigation of its diverse mechanisms
- Review, Wounds, NA
*Inflam↓, *antiOx↑, *ROS↓, *angioG↑, *COL1↑, *α-SMA↑, *TGF-β↑, *BMD↑, *hepatoP↑, *TNF-α↑, *HSP70/HSPA5↑, *SOD↑, *Catalase↑, *GSH↑, *MDA↓, *TOS↓, *IL6↓, *JAK2↓, *STAT3↓, *AMPK↑, *lipid-P↓, *VEGF↑, *Half-Life↝,
745- Bor,    Investigation of cytotoxic antiproliferative and antiapoptotic effects of nanosized boron phosphate filled sodium alginate composite on glioblastoma cancer cells
- in-vitro, GBM, U87MG - in-vitro, Nor, L929 - in-vitro, GBM, T98G
TumCD↑, *toxicity↓,
3514- Bor,  CUR,    Effects of Curcumin and Boric Acid Against Neurodegenerative Damage Induced by Amyloid Beta
- in-vivo, AD, NA
*DNAdam↓, *MDA↓, *AChE↓, *neuroP↑, *ROS↓, *NO↓,
3513- Bor,    Boric Acid Activation of eIF2α and Nrf2 Is PERK Dependent: a Mechanism that Explains How Boron Prevents DNA Damage and Enhances Antioxidant Status
- in-vitro, Pca, DU145 - in-vitro, Nor, MEF
NRF2↑, selectivity↑, NQO1↑, GCLC↑, HO-1↑, TumCP↓,
3512- Bor,    Activation of the EIF2α/ATF4 and ATF6 Pathways in DU-145 Cells by Boric Acid at the Concentration Reported in Men at the US Mean Boron Intake
- in-vitro, Pca, DU145
TumCP↓, eIF2α↑, ATF4↑, ATF6↑, GADD34↑, CHOP↓, GRP78/BiP↑, GRP94↑, Risk↓, *BMD↑, Ca+2↓, *Half-Life↝, IRE1∅, chemoP↑,
3511- Bor,    Boron
- Review, NA, NA
*memory↑, *motorD↑, *neuroP↑, Ca+2↓, ATF4↑, NRF2↑, *Inflam↓, *ROS↓,
3510- Bor,    Boron Affects the Development of the Kidney Through Modulation of Apoptosis, Antioxidant Capacity, and Nrf2 Pathway in the African Ostrich Chicks
- in-vivo, Nor, NA
*RenoP↑, *ROS↓, *antiOx↑, *Apoptosis↓, *NRF2↑, *HO-1↑, *MDA↓, *lipid-P↓, *GPx↓, *Catalase↑, *SOD↑, *ALAT↓, *AST↓, *ALP↓,
3509- Bor,    Boron and Prostate Cancer a Model for Understanding Boron Biology
- NA, Pca, NA
Ca+2↓,
3508- Bor,    The Effect of Boron on the UPR in Prostate Cancer Cells is Biphasic
- in-vitro, Pca, LNCaP - in-vitro, Pca, DU145
ER Stress↑, GRP78/BiP↑, p‑eIF2α↑, UPR↑, eff↓,
3507- Bor,    Boron inhibits apoptosis in hyperapoptosis condition: Acts by stabilizing the mitochondrial membrane and inhibiting matrix remodeling
*MMP↑, *Cyt‑c↓, *Apoptosis↓, *Casp3↓, *NO↓, *iNOS↓,
3506- Bor,    Boron Chemistry for Medical Applications
- Review, NA, NA
radioP↑, selectivity↑,
3505- Bor,    Mineral requirements for mitochondrial function: A connection to redox balance and cellular differentiation
- Review, NA, NA
*glucose↓, *creat↓, *SOD↑, *MMP↑, *ROS↓,
3504- Bor,    Boron Contents of German Mineral and Medicinal Waters and Their Bioavailability in Drosophila melanogaster and Humans
- Review, NA, NA
other↑, BioAv↑,
708- Bor,    Boron containing compounds as protease inhibitors
PSA↓,
720- Bor,    High Concentrations of Boric Acid Trigger Concentration-Dependent Oxidative Stress, Apoptotic Pathways and Morphological Alterations in DU-145 Human Prostate Cancer Cell Line
- in-vitro, Pca, DU145
ROS↑, TumCG↓, Apoptosis↑,
719- Bor,    Boric Acid Affects Cell Proliferation, Apoptosis, and Oxidative Stress in ALL Cells
- in-vitro, ALL, NA
Apoptosis↑, miR-21↓, TOS↓,
718- Bor,    Boric Acid Exhibits Anticancer Properties in Human Endometrial Cancer Ishikawa Cells
- in-vitro, NA, NA
OSI↑, TNF-α↓, IL1↓, Casp3↑, Apoptosis↑, TOS↑,
717- Bor,  PacT,    Boric acid as a protector against paclitaxel genotoxicity
- in-vitro, NA, NA
ChemoSideEff↓,
716- Bor,    Sugar-borate esters--potential chemical agents in prostate cancer chemoprevention
TumCG↓, Apoptosis↑,
715- Bor,    Boron-containing phenoxyacetanilide derivatives as hypoxia-inducible factor (HIF)-1alpha inhibitors
- in-vitro, Pca, HeLa
Hif1a↓,
714- Bor,    Dietary Boron and Hormone Replacement Therapy as Risk Factors for Lung Cancer in Women
- Analysis, NA, NA
Risk↓,
713- Bor,    Effects of dietary boron on cervical cytopathology and on micronucleus frequency in exfoliated buccal cells
- Analysis, NA, NA
Risk↓,
712- Bor,    Boron concentrations in selected foods from borate-producing regions in Turkey
- Analysis, NA, NA
Risk↓,
711- Bor,    Receptor Activated Ca2+ Release Is Inhibited by Boric Acid in Prostate Cancer Cells
- in-vitro, Pca, DU145
Ca+2↓,
710- Bor,    Boric acid inhibits stored Ca2+ release in DU-145 prostate cancer cells
- in-vitro, Pca, DU145
NAD↓, TumCP↓, CD38↑, Ca+2↓,
709- Bor,    Cellular changes in boric acid-treated DU-145 prostate cancer cells
- in-vitro, Pca, DU145
Cyc↓, MAPK↓, TumCMig↓, LAMP2↓, p‑ERK⇅, TumCM/A↑,
721- Bor,    Polymers Based on Phenyl Boric Acid in Tumor-Targeted Therapy
- Analysis, NA, NA
SA↓,
707- Bor,    Cytotoxic and apoptotic effects of boron compounds on leukemia cell line
- in-vitro, AML, HL-60
Apoptosis↑,
706- Bor,    Boron supplementation inhibits the growth and local expression of IGF-1 in human prostate adenocarcinoma (LNCaP) tumors in nude mice
- in-vivo, Pca, LNCaP
TumVol↓, IGF-1↓, PSA↓,
705- Bor,    Boric acid inhibits human prostate cancer cell proliferation
- in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP
TumCP↓,
704- Bor,    Inhibition of the enzymatic activity of prostate-specific antigen by boric acid and 3-nitrophenyl boronic acid
- in-vitro, Pca, NA
PSA↓,
703- Bor,    Boron intake and prostate cancer risk
- Analysis, NA, NA
Risk∅,
702- Bor,  GEN,  SeMet,  Rad,    Evaluation of ecological and in vitro effects of boron on prostate cancer risk (United States)
- Analysis, NA, NA
Risk↓, TumCMig↓, Bcl-2↓,
701- Bor,    Dietary boron intake and prostate cancer risk
- Analysis, NA, NA
Risk↓,
700- Bor,    Diadenosine phosphates and S-adenosylmethionine: novel boron binding biomolecules detected by capillary electrophoresis
- Analysis, NA, NA
SAM-e↝,
699- Bor,    Boric Acid Alleviates Gastric Ulcer by Regulating Oxidative Stress and Inflammation-Related Multiple Signaling Pathways
- in-vivo, NA, NA
*ROS↓, *MDA↓, *TNF-α↓, *IL6↓, *JAK2↓, *STAT3↓, *AMPK↑, *Sema3A/PlexinA1↑,
698- Bor,    Boron deprivation decreases liver S-adenosylmethionine and spermidine and increases plasma homocysteine and cysteine in rats
- in-vitro, NA, NA
SAM-e↑,
697- Bor,    Boron-containing compounds as preventive and chemotherapeutic agents for cancer
- Review, NA, NA
serineP↓, NADHdeh↓, Apoptosis↑,
733- Bor,    The analysis of boric acid effect on epithelial-mesenchymal transition of CD133 + CD117 + lung cancer stem cells
- in-vitro, Lung, NA
Snail↑, ITGB1↑, ITGA5↑, COL1A1↓, LAMA5↑, MMP3↓, Vim↓, E-cadherin↑, EMT↓, Zeb1↑,
744- Bor,    Borax affects cellular viability by inducing ER stress in hepatocellular carcinoma cells by targeting SLC12A5
- in-vitro, HCC, HepG2 - in-vitro, Nor, HL7702
TumCCA↑, SLC12A5↓, ATF6↑, CHOP↑, GRP78/BiP↑, Casp3↑, ER Stress↝, *toxicity↓, *eff↓,
743- Bor,    Boric Acid (Boron) Attenuates AOM-Induced Colorectal Cancer in Rats by Augmentation of Apoptotic and Antioxidant Mechanisms
- in-vitro, CRC, NA
BAX↑, Bcl-2↓, GPx↑, SOD↑, Catalase↑, MDA↓, TNF-α↓, IL6↓, IL10↑,
742- Bor,    In Vitro Effects of Boric Acid on Cell Cycle, Apoptosis, and miRNAs in Medullary Thyroid Cancer Cells
- in-vitro, Thyroid, NA
NOXA↑, APAF1↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, Bcl-xL↓, miR-21↓,
741- Bor,    Boron Derivatives Inhibit the Proliferation of Breast Cancer Cells and Affect Tumor-Specific T Cell Activity In Vitro by Distinct Mechanisms
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
MOB1↓, PD-L1↑, p‑YAP/TEAD↝, IFN-γ↓, sFasL↑, Perforin↓, GranA↓, GranB↓, GNLY↓, PD-1↑,
740- Bor,    Anti-cancer effect of boron derivatives on small-cell lung cancer
- in-vitro, Lung, DMS114 - in-vitro, Nor, MRC-5
Apoptosis↑, TumCCA↑, P53↑, Casp3↑, *toxicity↓,
739- Bor,    Borax regulates iron chaperone- and autophagy-mediated ferroptosis pathway in glioblastoma cells
- in-vitro, GBM, U87MG - in-vitro, Nor, HMC3
TumCG↓, TumCP↓, TumCCA↑, PCBP1↓, GSH↓, GPx4↓, Beclin-1↑, MDA↑, ACSL4↑, Casp3↑, Casp7↑, Ferroptosis↑, *toxicity↓,
738- Bor,    Borax induces ferroptosis of glioblastoma by targeting HSPA5/NRF2/GPx4/GSH pathways
- in-vitro, GBM, U251 - in-vitro, GBM, A172 - in-vitro, Nor, SVGp12
TumCP↓, GPx4↓, GSH↓, HSP70/HSPA5↓, NRF2↓, MDA↑, Casp3↑, Casp7↑, Ferroptosis↑, selectivity↑,
737- Bor,    Boric Acid Activation of eIF2α and Nrf2 Is PERK Dependent: a Mechanism that Explains How Boron Prevents DNA Damage and Enhances Antioxidant Statu
- in-vitro, Pca, DU145
Risk↓, p‑eIF2α↑, ATF4↑, GADD34↑,
736- Bor,    Evaluation of Boric Acid Treatment on microRNA-127-5p and Metastasis Genes Orchestration of Breast Cancer Stem Cells
- in-vitro, BC, MCF-7
miR-126↑, COL1A1↓, Vim↓, Zeb1↑, CDH1↑, ITGB1↑, ITGA5↑, LAMA5↑, Snail↑, miR-127-5p↑,
735- Bor,    Boric Acid Alters the Expression of DNA Double Break Repair Genes in MCF-7-Derived Breast Cancer Stem Cells
- in-vitro, BC, NA
BRCA1↑, BRCA2↑, ATM↓,
734- Bor,    Boric Acid Affects the Expression of DNA Double-Strand Break Repair Factors in A549 Cells and A549 Cancer Stem Cells: An In Vitro Study
- in-vitro, Lung, A549
ATM↓, Casp3↑, E-cadherin↑,
696- Bor,    Nothing Boring About Boron
- Review, Var, NA
*hs-CRP↓, *TNF-α↓, *SOD↑, *Catalase↑, *GPx↑, *cognitive↑, *memory↑, *Risk↓, *SAM-e↑, *NAD↝, *ATP↝, *Ca+2↝, HDAC↓, TumVol↓, IGF-1↓, PSA↓, Cyc↓, TumCMig↓, *serineP↓, HIF-1↓, *ChemoSideEff↓, *VitD↑, *Mag↑, *eff↑, Risk↓, *Inflam↓, *neuroP↑, *Calcium↑, *BMD↑, *chemoP↑, AntiCan↑, *Dose↑, *Dose↝, *BMPs↑, *testos↑, angioG↓, Apoptosis↑, *selectivity↑,
732- Bor,    Boron's neurophysiological effects and tumoricidal activity on glioblastoma cells with implications for clinical treatment
eff↑, IGF-1↝, Glycolysis↝,
731- Bor,    Protective Effect of Boric Acid Against Ochratoxin A-Induced Toxic Effects in Human Embryonal Kidney Cells (HEK293): A Study on Cytotoxic, Genotoxic, Oxidative, and Apoptotic Effects
- in-vitro, Nor, HEK293
*ROS↓,
730- Bor,  Cisplatin,    The Effect of Boric Acid and Borax on Oxidative Stress, Inflammation, ER Stress and Apoptosis in Cisplatin Toxication and Nephrotoxicity Developing as a Result of Toxication
- in-vivo, NA, NA
*ROS↓, *Inflam↓, RenoP↑,
729- Bor,    Promising potential of boron compounds against Glioblastoma: In Vitro antioxidant, anti-inflammatory and anticancer studies
- in-vitro, GBM, U87MG - in-vivo, Nor, HaCaT
TOS↑, TumCG↓, MDA↑, SOD↑, Catalase↑, TAC↓, GSH↓, BRAF↑, MAPK↓, PTEN↓, Raf↓, *toxicity↓,
728- Bor,    Boric Acid and Borax Protect Human Lymphocytes from Oxidative Stress and Genotoxicity Induced by 3-Monochloropropane-1,2-diol
other↓,
727- Bor,  RSL3,  erastin,    Enhancement of ferroptosis by boric acid and its potential use as chemosensitizer in anticancer chemotherapy
- in-vitro, Liver, HepG2
ROS↑, GSH↓, TBARS↑, Ferroptosis↑, ChemoSen↑,
726- Bor,    Redox Mechanisms Underlying the Cytostatic Effects of Boric Acid on Cancer Cells—An Issue Still Open
- Review, NA, NA
NAD↝, SAM-e↝, PSA↓, IGF-1↓, Cyc↓, P21↓, p‑MEK↓, p‑ERK↓, ROS↑, SOD↓, Catalase↓, MDA↑, GSH↓, IL1↓, IL6↓, TNF-α↓, BRAF↝, MAPK↝, PTEN↝, PI3K/Akt↝, eIF2α↑, ATF4↑, ATF6↑, NRF2↑, BAX↑, BID↑, Casp3↑, Casp9↑, Bcl-2↓, Bcl-xL↓,
725- Bor,    Boric acid exert anti-cancer effect in poorly differentiated hepatocellular carcinoma cells via inhibition of AKT signaling pathway
- in-vitro, HCC, NA
tumCV↓, Apoptosis↑, TumAuto↑, p‑Akt↓,
724- Bor,    Does Boric Acid Inhibit Cell Proliferation on MCF-7 and MDA-MB-231 Cells in Monolayer and Spheroid Cultures by Using Apoptosis Pathways?
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
Apoptosis↑, Casp3↝, Casp8↝, Casp9↝,
723- Bor,    Boric acid suppresses cell proliferation by TNF signaling pathway mediated apoptosis in SW-480 human colon cancer line
- in-vitro, Colon, SW480
Apoptosis↑, TNF-α↝,
722- Bor,    Boric acid as a promising agent in the treatment of ovarian cancer: Molecular mechanisms
- in-vitro, Ovarian, MDAH-2774
TumCP↓, TumCI↓, TumCMig↓, Apoptosis↑, ROS↑, miR-21↓, miR-130a↓, Casp8∅, Casp10∅, cycD1∅, CDK6∅, CDK4∅, FADD∅, DR4∅, DR5∅,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 98

Results for Effect on Cancer/Diseased Cells:
ACSL4↑,1,   Akt↓,1,   p‑Akt↓,1,   angioG↓,1,   AntiCan↑,2,   APAF1↑,1,   Apoptosis↑,16,   AR↓,1,   ATF4↑,5,   ATF6↑,3,   ATM↓,2,   p‑ATM↑,1,   BAX↑,4,   Bcl-2↓,6,   Bcl-xL↓,2,   Beclin-1↑,1,   BID↑,1,   BioAv↑,2,   BRAF↑,1,   BRAF↝,1,   BRCA1↑,1,   BRCA2↑,1,   Ca+2↓,6,   Casp10∅,1,   Casp3↑,10,   Casp3↝,1,   Casp7↑,2,   Casp8↝,1,   Casp8∅,1,   Casp9↑,3,   Casp9↝,1,   Catalase↓,1,   Catalase↑,2,   CD38↑,1,   Cdc42↓,2,   CDH1↑,2,   CDK4∅,1,   CDK6∅,1,   chemoP↑,1,   ChemoSen↑,1,   ChemoSideEff↓,1,   CHOP↓,1,   CHOP↑,1,   cMyc↓,1,   COL1A1↓,3,   Cyc↓,3,   cycD1∅,1,   DHT↑,1,   DNAdam↑,1,   DR4∅,1,   DR5∅,1,   E-cadherin↑,2,   eff↓,1,   eff↑,4,   EGFR↓,1,   eIF2α↑,3,   p‑eIF2α↑,2,   EMT↓,1,   ER Stress↑,2,   ER Stress↝,1,   p‑ERK↓,1,   p‑ERK⇅,1,   FADD∅,1,   Ferroptosis↑,3,   GADD34↑,2,   GCLC↑,1,   Glycolysis↝,1,   GNLY↓,1,   GPx↑,1,   GPx4↓,2,   GranA↓,1,   GranB↓,1,   GRP78/BiP↑,4,   GRP94↑,1,   GSH↓,5,   GutMicro↑,1,   HDAC↓,3,   HDL↓,1,   HIF-1↓,1,   Hif1a↓,2,   HO-1↑,1,   HSP70/HSPA5↓,1,   IFN-γ↓,1,   IGF-1↓,5,   IGF-1↝,1,   IL1↓,2,   IL10↑,1,   IL6↓,2,   IRE1∅,1,   ITGA5↑,3,   ITGB1↑,3,   LAMA5↑,3,   LAMP2↓,1,   LAT↓,1,   LC3II↑,1,   MAPK↓,2,   MAPK↝,1,   MDA↓,1,   MDA↑,4,   p‑MEK↓,1,   miR-126↑,1,   miR-127-5p↑,2,   miR-130a↓,1,   miR-21↓,3,   MMP3↓,1,   MOB1↓,1,   NAD↓,1,   NAD↝,1,   NADHdeh↓,1,   NLRP3↓,1,   NOXA↑,1,   NQO1↑,1,   NRF2↓,1,   NRF2↑,3,   OS↑,1,   OSI↑,1,   other↓,2,   other↑,1,   P21↓,1,   P53↓,1,   P53↑,1,   p‑P53↑,1,   p62↓,1,   p70S6↓,1,   PARP↓,2,   PCBP1↓,1,   PD-1↑,1,   PD-L1↑,1,   Perforin↓,1,   PI3K/Akt↝,1,   PSA↓,7,   PSMB5↓,1,   PTEN↓,1,   PTEN↑,1,   PTEN↝,1,   Rac1↓,1,   radioP↑,1,   RadioS↑,1,   Raf↓,1,   RenoP↑,1,   Rho↓,2,   Risk↓,11,   Risk∅,1,   ROS↑,6,   SA↓,1,   SAM-e↑,1,   SAM-e↝,2,   selectivity↑,3,   serineP↓,2,   sFasL↑,1,   SLC12A5↓,1,   Snail↑,3,   SOD↓,1,   SOD↑,2,   TAC↓,1,   TBARS↑,1,   TNF-α↓,3,   TNF-α↝,1,   TOS↓,1,   TOS↑,2,   TSC2↑,1,   TumAuto↑,2,   TumCCA↑,4,   TumCD↑,1,   TumCG↓,7,   TumCI↓,1,   TumCM/A↑,1,   TumCMig↓,4,   TumCP↓,9,   tumCV↓,1,   TumVol↓,4,   UPR↑,1,   VEGF↓,2,   Vim↓,3,   VitD↑,1,   p‑YAP/TEAD↝,1,   Zeb1↑,3,  
Total Targets: 177

Results for Effect on Normal Cells:
5LO↓,1,   AChE↓,1,   ALAT↓,2,   ALP↓,2,   AMPK↑,2,   angioG↑,1,   antiOx↑,3,   Apoptosis↓,2,   AST↓,2,   ATP↝,1,   Aβ↓,1,   BioAv↑,1,   BMD↑,4,   BMPs↑,1,   Ca+2?,1,   Ca+2↓,1,   Ca+2↝,1,   Calcium↑,2,   cardioP↑,1,   Casp3↓,1,   Catalase↑,4,   CEBPA↓,1,   chemoP↑,1,   ChemoSideEff↓,1,   CHOP↓,1,   cognitive↑,3,   COL1↑,1,   cortisol↑,1,   COX2↓,2,   creat↓,1,   CXCR2↑,1,   Cyt‑c↓,1,   DHT↑,1,   DNAdam↓,1,   Dose↑,1,   Dose↝,1,   eff↓,1,   eff↑,2,   FABP4↓,1,   FASN↓,1,   FGF↑,1,   glucose↓,1,   GLUT4↓,1,   GPx↓,1,   GPx↑,2,   GRP78/BiP↓,1,   GSH↑,3,   Half-Life↑,2,   Half-Life↝,2,   hepatoP↑,3,   HO-1↑,2,   hs-CRP↓,2,   HSP70/HSPA5↑,1,   IL10↑,1,   IL1β↓,2,   IL6↓,4,   IL8↓,1,   Inflam↓,7,   iNOS↓,2,   JAK2↓,2,   Keap1↓,1,   lipid-P↓,3,   Mag↑,2,   MDA↓,6,   memory↑,3,   MIP‑1α↓,1,   MMP↑,3,   MMP2↓,1,   motorD↑,1,   NAD↝,1,   neuroP↑,3,   NF-kB↓,4,   NO↓,2,   NRF2↑,3,   other↑,1,   PGE2↓,1,   PPARγ↓,1,   RenoP↓,1,   RenoP↑,1,   Risk↓,1,   ROS↓,9,   SAM-e↑,1,   selectivity↑,1,   Sema3A/PlexinA1↑,1,   serineP↓,1,   SHBG↓,1,   SOD↑,6,   SREBP1↓,1,   STAT3↓,2,   testos↑,1,   TGF-β↑,1,   TNF-α↓,6,   TNF-α↑,1,   TOS↓,2,   toxicity↓,6,   VEGF↑,1,   VitD↑,4,   α-SMA↑,1,   β-catenin/ZEB1↑,1,  
Total Targets: 99

Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:46  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page