condition found tbRes List
Bor, Boron: Click to Expand ⟱
Features: micronutrient
Boron is a trace mineral.
Used in treating yeast infections, improving athletic performance, or preventing osteoporosis.

Current research suggests that boric acid can modulate intercellular calcium levels—with potential implications for cancer therapy—by:
-Altering calcium channel activity and calcium influx,
-Modifying downstream calcium-dependent signaling, and
-Inducing apoptotic pathways preferentially in cancer cells due to their altered calcium handling dynamics.
Abnormal increases in [Ca²⁺]ᵢ can trigger mitochondrial dysfunction and activate calcium-dependent apoptotic pathways. Boric acid has been observed in some cell culture studies to induce apoptosis in cancer cells.
In normal cells, modest changes in [Ca²⁺]ᵢ induced by boric acid may not reach a threshold that triggers apoptosis or other stress responses. This could lead to a relative sparing of normal cells compared to cancer cells.

Pathways:
1.Calcium Signaling Pathway
In many cases, boron appears to normalize dysregulated calcium levels in cancer cells, often leading to an increase in calcium levels that can trigger calcium-dependent apoptotic pathways. 2.Apoptotic Pathways (Intrinsic and Extrinsic).
Direction of Modulation:
• Boron compounds may enhance the activation of apoptotic cascades.
• Typically, an increase in intracellular calcium (as noted above) can further lead to mitochondrial dysfunction, cytochrome c release, and subsequent caspase activation, thereby promoting apoptosis.
3.PI3K/AKT/mTOR Pathway
• Some studies indicate that boron-containing compounds can inhibit this pathway.
• Inhibition of PI3K/AKT/mTOR signaling reduces survival signals and can decrease cellular proliferation and growth in tumor cell.
4.MAPK/ERK Pathway
Boron may modulate the MAPK/ERK cascade by either dampening overactive mitogenic signals or altering the stress response.
• This modulation can lead to reduced proliferation signals and may promote cell cycle arrest in cancer cells.
5.NF-κB Signaling Pathway
• Some reports indicate that boron compounds can suppress NF-κB activity.
• This suppression might be achieved indirectly through modulation of upstream signals (such as changes in calcium or the cellular redox status) leading to decreased transcription of pro-survival and pro-inflammatory genes.
6.Wnt/β-Catenin Pathway
• Inhibition of Wnt/β-catenin signaling may interfere with proliferation and the maintenance of cancer stem cell populations.

ROS:
-ROS induction may be dose related.
-Some studies report that when boron compounds are combined with other treatments (like chemotherapy or radiotherapy), there is a synergistic increase in ROS generation.
Boron’s effects in a cancer context generally lean toward:
• Normalizing dysregulated calcium signaling to push cells toward apoptotic death
• Inhibiting pro-survival pathways such as PI3K/AKT/mTOR and NF-κB

(1) is essential for the growth and maintenance of bone;
(2) greatly improves wound healing;
(3) beneficially impacts the body's use of estrogen, testosterone, and vitamin D;
(4) boosts magnesium absorption;
(5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α);
(6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase;
(7) protects against pesticide-induced oxidative stress and heavy-metal toxicity;
(8) improves the brains electrical activity, cognitive performance, and short-term memory for elders;
(9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD(+));
(10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin's lymphoma; and
(11) may help ameliorate the adverse effects of traditional chemotherapeutic agents.

-Note half-life 21 hrs average
BioAv very high, 85-100%
Pathways:
- induce ROS productionin cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑,(contrary) Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,(contrary) HSP↓,
- Debateable if Lowers AntiOxidant defense in Cancer Cells: NRF2↓(most contrary), SOD↓(some contrary), GSH↓, Catalase↓(some contrary), HO1↓(contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓">ROS, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, IGF-1↓, VEGF↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, HSP↓,
- some indication of Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓,
- small indication of inhibiting glycolysis : HIF-1α↓, cMyc↓, GRP78↑, Glucose↓,
- small indication of inhibiting angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ROS, Reactive Oxygen Species: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
Reactive oxygen species (ROS) are highly reactive molecules that contain oxygen and can lead to oxidative stress in cells. They play a dual role in cancer biology, acting as both promoters and suppressors of cancer.
ROS can cause oxidative damage to DNA, leading to mutations that may contribute to cancer initiation and progression. So normally you want to inhibit ROS to prevent cell mutations.
However excessive ROS can induce apoptosis (programmed cell death) in cancer cells, potentially limiting tumor growth. Chemotherapy typically raises ROS.

"Reactive oxygen species (ROS) are two electron reduction products of oxygen, including superoxide anion, hydrogen peroxide, hydroxyl radical, lipid peroxides, protein peroxides and peroxides formed in nucleic acids 1. They are maintained in a dynamic balance by a series of reduction-oxidation (redox) reactions in biological systems and act as signaling molecules to drive cellular regulatory pathways."
"During different stages of cancer formation, abnormal ROS levels play paradoxical roles in cell growth and death 8. A physiological concentration of ROS that maintained in equilibrium is necessary for normal cell survival. Ectopic ROS accumulation promotes cell proliferation and consequently induces malignant transformation of normal cells by initiating pathological conversion of physiological signaling networks. Excessive ROS levels lead to cell death by damaging cellular components, including proteins, lipid bilayers, and chromosomes. Therefore, both scavenging abnormally elevated ROS to prevent early neoplasia and facilitating ROS production to specifically kill cancer cells are promising anticancer therapeutic strategies, in spite of their contradictoriness and complexity."
"ROS are the collection of derivatives of molecular oxygen that occur in biology, which can be categorized into two types, free radicals and non-radical species. The non-radical species are hydrogen peroxide (H 2O 2 ), organic hydroperoxides (ROOH), singlet molecular oxygen ( 1 O 2 ), electronically excited carbonyl, ozone (O3 ), hypochlorous acid (HOCl, and hypobromous acid HOBr). Free radical species are super-oxide anion radical (O 2•−), hydroxyl radical (•OH), peroxyl radical (ROO•) and alkoxyl radical (RO•) [130]. Any imbalance of ROS can lead to adverse effects. H2 O 2 and O 2 •− are the main redox signalling agents. The cellular concentration of H2 O 2 is about 10−8 M, which is almost a thousand times more than that of O2 •−".
"Radicals are molecules with an odd number of electrons in the outer shell [393,394]. A pair of radicals can be formed by breaking a chemical bond or electron transfer between two molecules."

Recent investigations have documented that polyphenols with good antioxidant activity may exhibit pro-oxidant activity in the presence of copper ions, which can induce apoptosis in various cancer cell lines but not in normal cells. "We have shown that such cell growth inhibition by polyphenols in cancer cells is reversed by copper-specific sequestering agent neocuproine to a significant extent whereas iron and zinc chelators are relatively ineffective, thus confirming the role of endogenous copper in the cytotoxic action of polyphenols against cancer cells. Therefore, this mechanism of mobilization of endogenous copper." > Ions could be one of the important mechanisms for the cytotoxic action of plant polyphenols against cancer cells and is possibly a common mechanism for all plant polyphenols. In fact, similar results obtained with four different polyphenolic compounds in this study, namely apigenin, luteolin, EGCG, and resveratrol, strengthen this idea.
Interestingly, the normal breast epithelial MCF10A cells have earlier been shown to possess no detectable copper as opposed to breast cancer cells [24], which may explain their resistance to polyphenols apigenin- and luteolin-induced growth inhibition as observed here (Fig. 1). We have earlier proposed [25] that this preferential cytotoxicity of plant polyphenols toward cancer cells is explained by the observation made several years earlier, which showed that copper levels in cancer cells are significantly elevated in various malignancies. Thus, because of higher intracellular copper levels in cancer cells, it may be predicted that the cytotoxic concentrations of polyphenols required would be lower in these cells as compared to normal cells."

Majority of ROS are produced as a by-product of oxidative phosphorylation, high levels of ROS are detected in almost all cancers.
-It is well established that during ER stress, cytosolic calcium released from the ER is taken up by the mitochondrion to stimulate ROS overgeneration and the release of cytochrome c, both of which lead to apoptosis.

Note: Products that may raise ROS can be found using this database, by:
Filtering on the target of ROS, and selecting the Effect Direction of ↑

Targets to raise ROS (to kill cancer cells):
• NADPH oxidases (NOX): NOX enzymes are involved in the production of ROS.
    -Targeting NOX enzymes can increase ROS levels and induce cancer cell death.
    -eNOX2 inhibition leads to a high NADH/NAD⁺ ratio which can lead to increased ROS
• Mitochondrial complex I: Inhibiting can increase ROS production
• P53: Activating p53 can increase ROS levels(by inducing the expression of pro-oxidant genes)
• Nrf2: regulates the expression of antioxidant genes. Inhibiting Nrf2 can increase ROS levels
• Glutathione (GSH): an antioxidant. Depleting GSH can increase ROS levels
• Catalase: Catalase converts H2O2 into H2O+O. Inhibiting catalase can increase ROS levels
• SOD1: converts superoxide into hydrogen peroxide. Inhibiting SOD1 can increase ROS levels
• PI3K/AKT pathway: regulates cell survival and metabolism. Inhibiting can increase ROS levels
• HIF-1α: regulates genes involved in metabolism and angiogenesis. Inhibiting HIF-1α can increase ROS
• Glycolysis: Inhibiting glycolysis can increase ROS levels • Fatty acid oxidation: Cancer cells often rely on fatty acid oxidation for energy production.
-Inhibiting fatty acid oxidation can increase ROS levels
• ER stress: Endoplasmic reticulum (ER) stress can increase ROS levels
• Autophagy: process by which cells recycle damaged organelles and proteins.
-Inhibiting autophagy can increase ROS levels and induce cancer cell death.
• KEAP1/Nrf2 pathway: regulates the expression of antioxidant genes.
    -Inhibiting KEAP1 or activating Nrf2 can increase ROS levels and induce cancer cell death.
• DJ-1: regulates the expression of antioxidant genes. Inhibiting DJ-1 can increase ROS levels
• PARK2: regulates the expression of antioxidant genes. Inhibiting PARK2 can increase ROS levels
• SIRT1:regulates the expression of antioxidant genes. Inhibiting SIRT1 can increase ROS levels
• AMPK: regulates energy metabolism and can increase ROS levels when activated.
• mTOR: regulates cell growth and metabolism. Inhibiting mTOR can increase ROS levels
• HSP90: regulates protein folding and can increase ROS levels when inhibited.
• Proteasome: degrades damaged proteins. Inhibiting the proteasome can increase ROS levels
• Lipid peroxidation: a process by which lipids are oxidized, leading to the production of ROS.
    -Increasing lipid peroxidation can increase ROS levels
• Ferroptosis: form of cell death that is regulated by iron and lipid peroxidation.
    -Increasing ferroptosis can increase ROS levels
• Mitochondrial permeability transition pore (mPTP): regulates mitochondrial permeability.
    -Opening the mPTP can increase ROS levels
• BCL-2 family proteins: regulate apoptosis and can increase ROS levels when inhibited.
• Caspase-independent cell death: a form of cell death that is regulated by ROS.
    -Increasing caspase-independent cell death can increase ROS levels
• DNA damage response: regulates the repair of DNA damage. Increasing DNA damage can increase ROS
• Epigenetic regulation: process by which gene expression is regulated.
    -Increasing epigenetic regulation can increase ROS levels

-PKM2, but not PKM1, can be inhibited by direct oxidation of cysteine 358 as an adaptive response to increased intracellular reactive oxygen species (ROS)

ProOxidant Strategy:(inhibit the Melavonate Pathway (likely will also inhibit GPx)
-HydroxyCitrate (HCA) found as supplement online and typically used in a dose of about 1.5g/day or more
-Atorvastatin typically 40-80mg/day
-Dipyridamole typically 200mg 2x/day
-Lycopene typically 100mg/day range

Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy

Scientific Papers found: Click to Expand⟱
760- Bor,    Therapeutic Efficacy of Boric Acid Treatment on Brain Tissue and Cognitive Functions in Rats with Experimental Alzheimer’s Disease
- in-vivo, AD, NA
*memory↑, BA reduced damage to learning and memory functions and significantly lowered oxidative stress markers in the AD model.
*ROS↓, been reported that BA also reduces oxidative stress by increasing glutathione reserves,
*GSH↑,
*Aβ↓, and strongly inhibits Aβ aggregation via hydroxyl group
*Inflam↓, BA can act as a protective agent in apoptotic processes by regulating oxidative and inflammatory processes as well as mitochondrial membrane potential
*MMP↑,
*lipid-P↓, BA added to the diet prevented lipid peroxidation by supporting and strengthening the antioxidant defense system.
*Ca+2↓, Boron is thought to prevent apoptosis and strengthen antioxidant defense by reducing intracellular oxygen radicals and calcium levels.
*cognitive↑, Our hypothesis is that boric acid can improve cognitive function and histopathological outcomes by reducing oxidative stress in rats with STZ-induced Alzheimer’s Disease
*TOS↓, After BA administration, it increased TAS by increasing the antioxidant effect, and as a result, TOS and OSI decreased.

746- Bor,    Organoboronic acids/esters as effective drug and prodrug candidates in cancer treatments: challenge and hope
- Review, NA, NA
eff↑, newly developed boron-containing compounds have already demonstrated highly promising activities
*toxicity↓, Boronic acid/ester has been successfully incorporated into cancer treatments and therapy mainly due to its remarkable oxophilicity and low toxicity levels in the body
ROS↑, can trigger tumour microenvironmental abnormalities such as high levels of reactive oxygen species (ROS) and overexpressed enzymes
LAT↓, boron accumulation were observed to counterpart LAT-1 expression in a bone metastasis model of breast cancer
AntiCan↑, high concentration of boron in males reduces the probability of prostate cancer by 54% compared to males with low boron concentrations
AR↓, bortezomib
PSMB5↓, bortezomib
IGF-1↓, insulin-like growth factor 1 (IGF-1) in tumours was markedly reduced by boric acid.
PSA↓, exposure to both low-and high-dose boron supplementation, prostate-specific antigen (PSA) levels dropped by an average of 87%, while tumour size declined by an average of 31.5%
TumVol↓,
eff↑, phenylboronic acid is a more potent inhibitor than boric acid in targeting metastatic and proliferative properties of prostate cancer cells
Rho↓, RhoA, Rac1
Cdc42↓,
Ca+2↓, ER Ca+2 depletion occurred after the treatment of DU-145 prostate cancer cells with the physiological concentrations of boric acid
eff↑, boric acid (BA), sodium pentaborate pentahydrate (NaB), and sodium perborate tetrahydrate (SPT) against SCLC cell line using DMS-114 cells

3522- Bor,    The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry
- Review, Var, NA
Hif1a↓, One compound, GN26361 (Table 2), potently inhibited the accumulation of HIF-1α under hypoxic conditions via the inhibition of hypoxia-induced HIF-1α transcriptional activity in HeLa cells (IC50 = 0.74 μM) [54].
HDAC↓, Peptidic boronic acids have also been studied for other microbial targets including as a hepatitis C virus (HCV) NS3/4A protease inhibitor [55], an antitubercular drug [56], penicillin-binding proteins [57], histone deacetylase (HDAC) inhibitors [58]
*CXCR2↑, reported boronic acid chemokine antagonist for CXCR 1 and 2 and was able to significantly inhibit inflammation in vivo
ROS↑, In addition to being used as ROS-activated prodrugs, boron-containing drugs have also been modified to form a prodrug, with the intention of increasing the favourability of their pharmacokinetic properties.

3516- Bor,    Boron in wound healing: a comprehensive investigation of its diverse mechanisms
- Review, Wounds, NA
*Inflam↓, anti-inflammatory, antimicrobial, antioxidant, and pro-proliferative effects.
*antiOx↑,
*ROS↓, The antioxidant properties of boron help protect cells from oxidative stress, a common feature of chronic wounds that can impair healing
*angioG↑, Boron compounds exhibit diverse therapeutic actions in wound healing, including antimicrobial effects, inflammation modulation, oxidative stress reduction, angiogenesis induction, and anti-fibrotic properties.
*COL1↑, Boron has been shown to increase the expression of proteins involved in wound contraction and matrix remodeling, such as collagen, alpha-smooth muscle actin, and transforming growth factor-beta1.
*α-SMA↑,
*TGF-β↑,
*BMD↑, Animals treated with boron showed favorable changes in bone density, wound healing, embryonic development, and liver metabolism
*hepatoP↑,
*TNF-α↑, BA elevates TNF-α and heat-shock proteins 70 that are related to wound healing.
*HSP70/HSPA5↑,
*SOD↑, antioxidant properties of BA showed that boron protects renal tissue from I/R injury via increasing SOD, CAT, and GSH and decreasing MDA and total oxidant status (TOS)
*Catalase↑,
*GSH↑,
*MDA↓,
*TOS↓,
*IL6↓, Boron supports gastric tissue by alleviating ROS, MDA, IL-6, TNF-α, and JAK2/STAT3 action, as well as improving AMPK activity
*JAK2↓,
*STAT3↓,
*AMPK↑,
*lipid-P↓, boron may improve wound healing by hindering lipid peroxidation and increasing the level of VEGF
*VEGF↑,
*Half-Life↝, Boron is a trace element, usually found at a concentration of 0–0.2 mg/dL in plasma with a half-life of 5–10 h, and 1–2 mg of it is needed in the daily diet

3514- Bor,  CUR,    Effects of Curcumin and Boric Acid Against Neurodegenerative Damage Induced by Amyloid Beta
- in-vivo, AD, NA
*DNAdam↓, Co-administration of BA and curcumin on synaptosomes exposed to Aβ1-42 resulted in a significant decrease in DNA fragmentation values, MDA levels, and AChE activities.
*MDA↓,
*AChE↓,
*neuroP↑, BA and curcumin had protective effects on rat brain synaptosomes against Aβ1-42 exposure.
*ROS↓, BA and curcumin treatment can have abilities to prevent the alterations of the cholinergic system and inhibit oxidative stress in the cerebral cortex synapses of Aβ1-42 exposed.
*NO↓, Synaptosomes treated with BA showed a significant reduction in MDA and NO levels

3511- Bor,    Boron
- Review, NA, NA
*memory↑, In boron-deprived humans, boron supplementation improved mental alertness, attention, short-term memory, and motor speed and dexterity.
*motorD↑,
*neuroP↑,
Ca+2↓, human prostate cells, boric acid acts as a reversible noncompetitive inhibitor of cADPR leading to decreased endoplasmic reticulum Ca2+
ATF4↑, The decreased Ca2+ results in the E74 like ETS transcription factor 2α activating transcription factor 4 (ATF4) and nuclear factor erythroid 2 like 2 (Nrf2),
NRF2↑,
*Inflam↓, a dietary boron intake >0.4 mg/d may be useful for bone and brain health and in modulating inflammatory and oxidative stress
*ROS↓,

3510- Bor,    Boron Affects the Development of the Kidney Through Modulation of Apoptosis, Antioxidant Capacity, and Nrf2 Pathway in the African Ostrich Chicks
- in-vivo, Nor, NA
*RenoP↑, Our results revealed that low doses of boron (up to 160 mg) had positive effect, while high doses (especially 640 mg) caused negative effect on the development of the kidney
*ROS↓, The low doses regulate the oxidative and enzyme activity in the kidney.
*antiOx↑, boron at low doses upregulated the expression of genes involved in the antioxidant pathway
*Apoptosis↓, low levels of boron (up to 160 mg) inhibited the cell apoptosis, regulate the enzyme activity, and improved the antioxidant system, thus may encourage the development of the ostrich chick's kidney
*NRF2↑, maximum localization of Nrf2 in 80 mg/L BA dose group
*HO-1↑, As the boron concentration increased, the expression of Nrf2, GCLc, and HO-1 genes upregulated
*MDA↓, In comparison to those of the group 1, MDA content (lipid peroxidation marker) was significantly decreased by 26.02 and 48.12% in the 40 and 80 mg/L BA groups
*lipid-P↓,
*GPx↓, GSH-PX activity of ostrich chick kidney tissue was slightly increased in the 40 and 80 mg/L BA groups,
*Catalase↑, supplementation of low doses of boron in the ostrich drinking water has resulted in stimulation of antioxidant capacity of GR, CAT, and SOD significantly.
*SOD↑,
*ALAT↓, boron supply in low doses (especially 80 mg/L BA) showed decrease levels in the activity of ALT, AST, and ALP.
*AST↓,
*ALP↓,

3505- Bor,    Mineral requirements for mitochondrial function: A connection to redox balance and cellular differentiation
- Review, NA, NA
*glucose↓, Boron supplementation in human subjects decreased serum glucose, creatinine, and calcitonin,
*creat↓,
*SOD↑, while it increased serum triglycerides, ceruloplasmin, and erythrocyte superoxide dismutase
*MMP↑, Boron administration had positive effects on mitochondrial membrane potential and function in multiple species, but entry into mitochondria was not confirmed
*ROS↓, The available evidence suggest that mitochondria may benefit from the availability of boron, which may promote metabolism and reduce redox stress.

720- Bor,    High Concentrations of Boric Acid Trigger Concentration-Dependent Oxidative Stress, Apoptotic Pathways and Morphological Alterations in DU-145 Human Prostate Cancer Cell Line
- in-vitro, Pca, DU145
ROS↑, boric acid, known as an antioxidant, may prevent cell proliferation by acting as an oxidant in certain doses
TumCG↓,
Apoptosis↑,

699- Bor,    Boric Acid Alleviates Gastric Ulcer by Regulating Oxidative Stress and Inflammation-Related Multiple Signaling Pathways
- in-vivo, NA, NA
*ROS↓,
*MDA↓,
*TNF-α↓,
*IL6↓,
*JAK2↓,
*STAT3↓,
*AMPK↑,
*Sema3A/PlexinA1↑,

731- Bor,    Protective Effect of Boric Acid Against Ochratoxin A-Induced Toxic Effects in Human Embryonal Kidney Cells (HEK293): A Study on Cytotoxic, Genotoxic, Oxidative, and Apoptotic Effects
- in-vitro, Nor, HEK293
*ROS↓, normal kidney cells with Ochratoxin A-Induced Toxic Effects

730- Bor,  Cisplatin,    The Effect of Boric Acid and Borax on Oxidative Stress, Inflammation, ER Stress and Apoptosis in Cisplatin Toxication and Nephrotoxicity Developing as a Result of Toxication
- in-vivo, NA, NA
*ROS↓, decreased inflammation and oxidative stress caused by cisplatin
*Inflam↓,
RenoP↑, boric acid and borax reduced apoptotic damage in kidney tissue,

727- Bor,  RSL3,  erastin,    Enhancement of ferroptosis by boric acid and its potential use as chemosensitizer in anticancer chemotherapy
- in-vitro, Liver, HepG2
ROS↑, at high, pharmacological concentrations
GSH↓, BA can increase intracellular ROS,
TBARS↑,
Ferroptosis↑,
ChemoSen↑, These observations suggest that BA could be exploited as a chemo-sensitizer agent in order to overcome cancer drug resistance in selected conditions.

726- Bor,    Redox Mechanisms Underlying the Cytostatic Effects of Boric Acid on Cancer Cells—An Issue Still Open
- Review, NA, NA
NAD↝, high affinity for the ribose moieties of NAD+
SAM-e↝, high affinity for S-adenosylmethione
PSA↓,
IGF-1↓,
Cyc↓, reduction in cyclins A–E
P21↓,
p‑MEK↓,
p‑ERK↓, ERK (P-ERK1/2)
ROS↑, induce oxidative stress by decreasing superoxide dismutase (SOD) and catalase (CAT)
SOD↓,
Catalase↓,
MDA↑,
GSH↓,
IL1↓, IL-1α
IL6↓,
TNF-α↓,
BRAF↝,
MAPK↝,
PTEN↝,
PI3K/Akt↝,
eIF2α↑,
ATF4↑,
ATF6↑,
NRF2↑,
BAX↑,
BID↑,
Casp3↑,
Casp9↑,
Bcl-2↓,
Bcl-xL↓,

722- Bor,    Boric acid as a promising agent in the treatment of ovarian cancer: Molecular mechanisms
- in-vitro, Ovarian, MDAH-2774
TumCP↓,
TumCI↓,
TumCMig↓,
Apoptosis↑,
ROS↑,
miR-21↓,
miR-130a↓,
Casp8∅, Caspase-8, Caspase-10, Cyclin D1, Cyclin D2, CDK6, CDK4, FADD, TRADD, FAS, DR4 and DR5 gene mRNA expression changes were found insignificant in boric acid treated group compared with control
Casp10∅,
cycD1∅,
CDK6∅,
CDK4∅,
FADD∅,
DR4∅,
DR5∅,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 15

Results for Effect on Cancer/Diseased Cells:
AntiCan↑,1,   Apoptosis↑,2,   AR↓,1,   ATF4↑,2,   ATF6↑,1,   BAX↑,1,   Bcl-2↓,1,   Bcl-xL↓,1,   BID↑,1,   BRAF↝,1,   Ca+2↓,2,   Casp10∅,1,   Casp3↑,1,   Casp8∅,1,   Casp9↑,1,   Catalase↓,1,   Cdc42↓,1,   CDK4∅,1,   CDK6∅,1,   ChemoSen↑,1,   Cyc↓,1,   cycD1∅,1,   DR4∅,1,   DR5∅,1,   eff↑,3,   eIF2α↑,1,   p‑ERK↓,1,   FADD∅,1,   Ferroptosis↑,1,   GSH↓,2,   HDAC↓,1,   Hif1a↓,1,   IGF-1↓,2,   IL1↓,1,   IL6↓,1,   LAT↓,1,   MAPK↝,1,   MDA↑,1,   p‑MEK↓,1,   miR-130a↓,1,   miR-21↓,1,   NAD↝,1,   NRF2↑,2,   P21↓,1,   PI3K/Akt↝,1,   PSA↓,2,   PSMB5↓,1,   PTEN↝,1,   RenoP↑,1,   Rho↓,1,   ROS↑,6,   SAM-e↝,1,   SOD↓,1,   TBARS↑,1,   TNF-α↓,1,   TumCG↓,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,1,   TumVol↓,1,  
Total Targets: 60

Results for Effect on Normal Cells:
AChE↓,1,   ALAT↓,1,   ALP↓,1,   AMPK↑,2,   angioG↑,1,   antiOx↑,2,   Apoptosis↓,1,   AST↓,1,   Aβ↓,1,   BMD↑,1,   Ca+2↓,1,   Catalase↑,2,   cognitive↑,1,   COL1↑,1,   creat↓,1,   CXCR2↑,1,   DNAdam↓,1,   glucose↓,1,   GPx↓,1,   GSH↑,2,   Half-Life↝,1,   hepatoP↑,1,   HO-1↑,1,   HSP70/HSPA5↑,1,   IL6↓,2,   Inflam↓,4,   JAK2↓,2,   lipid-P↓,3,   MDA↓,4,   memory↑,2,   MMP↑,2,   motorD↑,1,   neuroP↑,2,   NO↓,1,   NRF2↑,1,   RenoP↑,1,   ROS↓,9,   Sema3A/PlexinA1↑,1,   SOD↑,3,   STAT3↓,2,   TGF-β↑,1,   TNF-α↓,1,   TNF-α↑,1,   TOS↓,2,   toxicity↓,1,   VEGF↑,1,   α-SMA↑,1,  
Total Targets: 47

Scientific Paper Hit Count for: ROS, Reactive Oxygen Species
15 Boron
1 Curcumin
1 Cisplatin
1 Ras-selective lethal 3
1 erastin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:46  Target#:275  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page