condition found tbRes List
Bor, Boron: Click to Expand ⟱
Features: micronutrient
Boron is a trace mineral.
Used in treating yeast infections, improving athletic performance, or preventing osteoporosis.

Current research suggests that boric acid can modulate intercellular calcium levels—with potential implications for cancer therapy—by:
-Altering calcium channel activity and calcium influx,
-Modifying downstream calcium-dependent signaling, and
-Inducing apoptotic pathways preferentially in cancer cells due to their altered calcium handling dynamics.
Abnormal increases in [Ca²⁺]ᵢ can trigger mitochondrial dysfunction and activate calcium-dependent apoptotic pathways. Boric acid has been observed in some cell culture studies to induce apoptosis in cancer cells.
In normal cells, modest changes in [Ca²⁺]ᵢ induced by boric acid may not reach a threshold that triggers apoptosis or other stress responses. This could lead to a relative sparing of normal cells compared to cancer cells.

Pathways:
1.Calcium Signaling Pathway
In many cases, boron appears to normalize dysregulated calcium levels in cancer cells, often leading to an increase in calcium levels that can trigger calcium-dependent apoptotic pathways. 2.Apoptotic Pathways (Intrinsic and Extrinsic).
Direction of Modulation:
• Boron compounds may enhance the activation of apoptotic cascades.
• Typically, an increase in intracellular calcium (as noted above) can further lead to mitochondrial dysfunction, cytochrome c release, and subsequent caspase activation, thereby promoting apoptosis.
3.PI3K/AKT/mTOR Pathway
• Some studies indicate that boron-containing compounds can inhibit this pathway.
• Inhibition of PI3K/AKT/mTOR signaling reduces survival signals and can decrease cellular proliferation and growth in tumor cell.
4.MAPK/ERK Pathway
Boron may modulate the MAPK/ERK cascade by either dampening overactive mitogenic signals or altering the stress response.
• This modulation can lead to reduced proliferation signals and may promote cell cycle arrest in cancer cells.
5.NF-κB Signaling Pathway
• Some reports indicate that boron compounds can suppress NF-κB activity.
• This suppression might be achieved indirectly through modulation of upstream signals (such as changes in calcium or the cellular redox status) leading to decreased transcription of pro-survival and pro-inflammatory genes.
6.Wnt/β-Catenin Pathway
• Inhibition of Wnt/β-catenin signaling may interfere with proliferation and the maintenance of cancer stem cell populations.

ROS:
-ROS induction may be dose related.
-Some studies report that when boron compounds are combined with other treatments (like chemotherapy or radiotherapy), there is a synergistic increase in ROS generation.
Boron’s effects in a cancer context generally lean toward:
• Normalizing dysregulated calcium signaling to push cells toward apoptotic death
• Inhibiting pro-survival pathways such as PI3K/AKT/mTOR and NF-κB

(1) is essential for the growth and maintenance of bone;
(2) greatly improves wound healing;
(3) beneficially impacts the body's use of estrogen, testosterone, and vitamin D;
(4) boosts magnesium absorption;
(5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α);
(6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase;
(7) protects against pesticide-induced oxidative stress and heavy-metal toxicity;
(8) improves the brains electrical activity, cognitive performance, and short-term memory for elders;
(9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD(+));
(10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin's lymphoma; and
(11) may help ameliorate the adverse effects of traditional chemotherapeutic agents.

-Note half-life 21 hrs average
BioAv very high, 85-100%
Pathways:
- induce ROS productionin cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑,(contrary) Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,(contrary) HSP↓,
- Debateable if Lowers AntiOxidant defense in Cancer Cells: NRF2↓(most contrary), SOD↓(some contrary), GSH↓, Catalase↓(some contrary), HO1↓(contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓">NF-kB, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, IGF-1↓, VEGF↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, HSP↓,
- some indication of Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓,
- small indication of inhibiting glycolysis : HIF-1α↓, cMyc↓, GRP78↑, Glucose↓,
- small indication of inhibiting angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


NF-kB, Nuclear factor kappa B: Click to Expand ⟱
Source: HalifaxProj(inhibit)
Type:
NF-kB signaling
Nuclear factor kappa B (NF-κB) is a transcription factor that plays a crucial role in regulating immune response, inflammation, cell proliferation, and survival.
NF-κB is often found to be constitutively active in many types of cancer cells. This persistent activation can promote tumorigenesis by enhancing cell survival, proliferation, and metastasis.


Scientific Papers found: Click to Expand⟱
3515- Bor,    EVIDENCE THAT BORON DOWN-REGULATES INFLAMMATION THROUGH THE NF-(KAPPA)B PATHWAY
- in-vitro, Nor, NA
*TNF-α↓, supplemental boron displayed decreased levels of TNF-alpha (a), IL-1ß, MIP-1a, and iNOS expression. Each of these factors is under NF-kappa (k) B control.
*IL1β↓,
*MIP‑1α↓,
*iNOS↓,
*NF-kB↓,

3520- Bor,    Effect of boron element on photoaging in rats
- in-vivo, NA, NA
*hepatoP↑, to positively affect the liver metabolism, and to promote bone density, embryogenic development and wound healing, and is known to provide significant benefits in cancer treatment through neutron capture systems
*BMD↑,
*COX2↓, Increased skin inflammatory parameters (COX-2, IL-8, NF-KB, IL-6, and TNF-α) levels in UVB-exposed groups were inhibited in all treatment groups
*IL8↓,
*NF-kB↓,
*IL6↓,
*TNF-α↓,

3518- Bor,    Boron Report
- Review, Var, NA - Review, AD, NA
Risk↓, Boron reduces prostate cancer incidence by up to 64%
serineP↓, Boric acid acts to inhibit serine proteases—it decreases PSA by 87% and reduces tumor size in a prostate cancer mouse model
PSA↓,
TumVol↓,
IGF-1↓, expression of IGF-1 (insulin-like growth factor type 1) was markedly reduced by boron treatment. Circulating blood levels of IGF-1 were not reduced in the treated mice, however.
*Mag↑, In situations of adequate calcium supply but deficient magnesium resources, boron appears to substitute or “pinch hit” for magnesium during the process of bone formation.
*Calcium↑, The effect of boron on raising plasma calcium levels may, in part, be due to its enhancing effect on vitamin D.1
*VitD↑,
*COX2↓, boron has been shown to inhibit cyclooxygenase (COX) and lipoxygenase (LOX).
*5LO↓,
*PGE2↓, leads to a decrease in prostaglandin E2 (PGE2)
*NF-kB↓, suppressing nuclear factor kappa beta (NfkappaB)
*cognitive↑, Since it is now commonly accepted that the routine use of NSAIDs significantly reduces the incidence of Alzheimer’s disease,31,32 it is not surprising that papers have been published on boron’s positive effect on cognitive function.

3517- Bor,  Se,    The protective effects of selenium and boron on cyclophosphamide-induced hepatic oxidative stress, inflammation, and apoptosis in rats
- in-vivo, Nor, NA
*hepatoP↑, However, it was found that Se protects the liver slightly better against CP damage than B
*ALAT↓, statistically significant difference was observed in the serum levels of ALT, AST, ALP, TAS, TOS and OSI.
*AST↓,
*ALP↓,
*NF-kB↓, A statistically significant difference was observed in serum levels of NF-kB, TNF-α, IL -1β, IL -6 and IL -10 when the Se + CP and B + CP-treated groups were compared with the CP-treated group
*TNF-α↓, fig 9
*IL1β↓,
*IL6↓,
*IL10↑,
*SOD↑, A statistically remarkable change in serum levels of SOD, CAT, GPx, MDA and GSH was observed in the group receiving only CP compared to groups Se, B and the control.
*Catalase↑,
*MDA↓, Fig 10
*GSH↑,
*GPx↑,
*antiOx↑, suggests that B and Se increase intracellular antioxidant status.
*NRF2↑, Se and B treatment can protect rat liver tissue from CP-induced oxidative stress, inflammation, and apoptosis by regulating Bax/Bcl-2 and Nrf2-Keap-1 signaling pathways.
*Keap1↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
IGF-1↓,1,   PSA↓,1,   Risk↓,1,   serineP↓,1,   TumVol↓,1,  
Total Targets: 5

Results for Effect on Normal Cells:
5LO↓,1,   ALAT↓,1,   ALP↓,1,   antiOx↑,1,   AST↓,1,   BMD↑,1,   Calcium↑,1,   Catalase↑,1,   cognitive↑,1,   COX2↓,2,   GPx↑,1,   GSH↑,1,   hepatoP↑,2,   IL10↑,1,   IL1β↓,2,   IL6↓,2,   IL8↓,1,   iNOS↓,1,   Keap1↓,1,   Mag↑,1,   MDA↓,1,   MIP‑1α↓,1,   NF-kB↓,4,   NRF2↑,1,   PGE2↓,1,   SOD↑,1,   TNF-α↓,3,   VitD↑,1,  
Total Targets: 28

Scientific Paper Hit Count for: NF-kB, Nuclear factor kappa B
4 Boron
1 Selenium
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:46  Target#:214  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page