condition found tbRes List
Bor, Boron: Click to Expand ⟱
Features: micronutrient
Boron is a trace mineral.
Used in treating yeast infections, improving athletic performance, or preventing osteoporosis.

Current research suggests that boric acid can modulate intercellular calcium levels—with potential implications for cancer therapy—by:
-Altering calcium channel activity and calcium influx,
-Modifying downstream calcium-dependent signaling, and
-Inducing apoptotic pathways preferentially in cancer cells due to their altered calcium handling dynamics.
Abnormal increases in [Ca²⁺]ᵢ can trigger mitochondrial dysfunction and activate calcium-dependent apoptotic pathways. Boric acid has been observed in some cell culture studies to induce apoptosis in cancer cells.
In normal cells, modest changes in [Ca²⁺]ᵢ induced by boric acid may not reach a threshold that triggers apoptosis or other stress responses. This could lead to a relative sparing of normal cells compared to cancer cells.

Pathways:
1.Calcium Signaling Pathway
In many cases, boron appears to normalize dysregulated calcium levels in cancer cells, often leading to an increase in calcium levels that can trigger calcium-dependent apoptotic pathways. 2.Apoptotic Pathways (Intrinsic and Extrinsic).
Direction of Modulation:
• Boron compounds may enhance the activation of apoptotic cascades.
• Typically, an increase in intracellular calcium (as noted above) can further lead to mitochondrial dysfunction, cytochrome c release, and subsequent caspase activation, thereby promoting apoptosis.
3.PI3K/AKT/mTOR Pathway
• Some studies indicate that boron-containing compounds can inhibit this pathway.
• Inhibition of PI3K/AKT/mTOR signaling reduces survival signals and can decrease cellular proliferation and growth in tumor cell.
4.MAPK/ERK Pathway
Boron may modulate the MAPK/ERK cascade by either dampening overactive mitogenic signals or altering the stress response.
• This modulation can lead to reduced proliferation signals and may promote cell cycle arrest in cancer cells.
5.NF-κB Signaling Pathway
• Some reports indicate that boron compounds can suppress NF-κB activity.
• This suppression might be achieved indirectly through modulation of upstream signals (such as changes in calcium or the cellular redox status) leading to decreased transcription of pro-survival and pro-inflammatory genes.
6.Wnt/β-Catenin Pathway
• Inhibition of Wnt/β-catenin signaling may interfere with proliferation and the maintenance of cancer stem cell populations.

ROS:
-ROS induction may be dose related.
-Some studies report that when boron compounds are combined with other treatments (like chemotherapy or radiotherapy), there is a synergistic increase in ROS generation.
Boron’s effects in a cancer context generally lean toward:
• Normalizing dysregulated calcium signaling to push cells toward apoptotic death
• Inhibiting pro-survival pathways such as PI3K/AKT/mTOR and NF-κB

(1) is essential for the growth and maintenance of bone;
(2) greatly improves wound healing;
(3) beneficially impacts the body's use of estrogen, testosterone, and vitamin D;
(4) boosts magnesium absorption;
(5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α);
(6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase;
(7) protects against pesticide-induced oxidative stress and heavy-metal toxicity;
(8) improves the brains electrical activity, cognitive performance, and short-term memory for elders;
(9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD(+));
(10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin's lymphoma; and
(11) may help ameliorate the adverse effects of traditional chemotherapeutic agents.

-Note half-life 21 hrs average
BioAv very high, 85-100%
Pathways:
- induce ROS productionin cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑,(contrary) Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,(contrary) HSP↓,
- Debateable if Lowers AntiOxidant defense in Cancer Cells: NRF2↓(most contrary), SOD↓(some contrary), GSH↓, Catalase↓(some contrary), HO1↓(contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, IGF-1↓, VEGF↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, HSP↓,
- some indication of Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓,
- small indication of inhibiting glycolysis : HIF-1α↓, cMyc↓, GRP78↑, Glucose↓,
- small indication of inhibiting angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


HO-1, HMOX1: Click to Expand ⟱
Source:
Type:
(Also known as Hsp32 and HMOX1)
HO-1 is the common abbreviation for the protein (heme oxygenase‑1) produced by the HMOX1 gene.
HO-1 is an enzyme that plays a crucial role in various cellular processes, including the breakdown of heme, a toxic molecule. Research has shown that HO-1 is involved in the development and progression of cancer.
-widely regarded as having antioxidant and cytoprotective effects
-The overall activity of HO‑1 helps to reduce the pro‐oxidant load (by degrading free heme, a pro‑oxidant) and to generate molecules (like bilirubin) that can protect cells from oxidative damage

Studies have found that HO-1 is overexpressed in various types of cancer, including lung, breast, colon, and prostate cancer. The overexpression of HO-1 in cancer cells can contribute to their survival and proliferation by:
  Reducing oxidative stress and inflammation
  Promoting angiogenesis (the formation of new blood vessels)
  Inhibiting apoptosis (programmed cell death)
  Enhancing cell migration and invasion
When HO-1 is at a normal level, it mainly exerts an antioxidant effect, and when it is excessively elevated, it causes an accumulation of iron ions.

A proper cellular level of HMOX1 plays an antioxidative function to protect cells from ROS toxicity. However, its overexpression has pro-oxidant effects to induce ferroptosis of cells, which is dependent on intracellular iron accumulation and increased ROS content upon excessive activation of HMOX1.

-Curcumin   Activates the Nrf2 pathway leading to HO‑1 induction; known for its anti‑inflammatory and antioxidant effects.
-Resveratrol  Induces HO‑1 via activation of SIRT1/Nrf2 signaling; exhibits antioxidant and cardioprotective properties.
-Quercetin   Activates Nrf2 and related antioxidant pathways; contributes to anti‑oxidative and anti‑inflammatory responses.
-EGCG     Promotes HO‑1 expression through activation of the Nrf2/ARE pathway; also exhibits anti‑inflammatory and anticancer properties.
-Sulforaphane One of the most potent natural HO‑1 inducers; triggers Nrf2 nuclear translocation and upregulates a battery of phase II detoxifying enzymes.
-Luteolin    Induces HO‑1 via Nrf2 activation; may also exert anti‑inflammatory and neuroprotective effects in various cell models.
-Apigenin   Has been reported to induce HO‑1 expression partly via the MAPK and Nrf2 pathways; also known for anti‑inflammatory and anticancer activities.


Scientific Papers found: Click to Expand⟱
3524- Bor,    Boric Acid Alleviates Lipopolysaccharide-Induced Acute Lung Injury in Mice
*Inflam↓, Furthermore, BA exhibited anti-inflammatory properties by suppressing inflammatory cytokines within the lung tissue.
*SOD↑, BA ingestion caused upregulation in SOD and a decrease in MDA contents in lung tissue homogenates.
*MDA↓,
*GRP78/BiP↓, BA downregulated the levels of GRP78 and CHOP compared to the LPS group.
*CHOP↓,
*NRF2↑, Remarkably, BA also upregulated transcription and protein expression of Nrf2 and HO-1 compared to the LPS group.
*HO-1↑,

3513- Bor,    Boric Acid Activation of eIF2α and Nrf2 Is PERK Dependent: a Mechanism that Explains How Boron Prevents DNA Damage and Enhances Antioxidant Status
- in-vitro, Pca, DU145 - in-vitro, Nor, MEF
NRF2↑, Cytoplasmic Nrf2 was translocated to the nucleus at 1.5–2 h in DU-145 and MEF WT cells, but not MEF PERK −/− cells. BA treatment demonstrating BA-activated Nrf2
selectivity↑, but not MEF PERK −/− cells.
NQO1↑, , NQO1, GCLC, and HMOX-1. DU-145 cells treated with BA increased the expression of all three gene
GCLC↑,
HO-1↑,
TumCP↓, BA activates Nrf2 and ARE explains how BA slows proliferation of DU-145 cells but does not cause apoptosis

3510- Bor,    Boron Affects the Development of the Kidney Through Modulation of Apoptosis, Antioxidant Capacity, and Nrf2 Pathway in the African Ostrich Chicks
- in-vivo, Nor, NA
*RenoP↑, Our results revealed that low doses of boron (up to 160 mg) had positive effect, while high doses (especially 640 mg) caused negative effect on the development of the kidney
*ROS↓, The low doses regulate the oxidative and enzyme activity in the kidney.
*antiOx↑, boron at low doses upregulated the expression of genes involved in the antioxidant pathway
*Apoptosis↓, low levels of boron (up to 160 mg) inhibited the cell apoptosis, regulate the enzyme activity, and improved the antioxidant system, thus may encourage the development of the ostrich chick's kidney
*NRF2↑, maximum localization of Nrf2 in 80 mg/L BA dose group
*HO-1↑, As the boron concentration increased, the expression of Nrf2, GCLc, and HO-1 genes upregulated
*MDA↓, In comparison to those of the group 1, MDA content (lipid peroxidation marker) was significantly decreased by 26.02 and 48.12% in the 40 and 80 mg/L BA groups
*lipid-P↓,
*GPx↓, GSH-PX activity of ostrich chick kidney tissue was slightly increased in the 40 and 80 mg/L BA groups,
*Catalase↑, supplementation of low doses of boron in the ostrich drinking water has resulted in stimulation of antioxidant capacity of GR, CAT, and SOD significantly.
*SOD↑,
*ALAT↓, boron supply in low doses (especially 80 mg/L BA) showed decrease levels in the activity of ALT, AST, and ALP.
*AST↓,
*ALP↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
GCLC↑,1,   HO-1↑,1,   NQO1↑,1,   NRF2↑,1,   selectivity↑,1,   TumCP↓,1,  
Total Targets: 6

Results for Effect on Normal Cells:
ALAT↓,1,   ALP↓,1,   antiOx↑,1,   Apoptosis↓,1,   AST↓,1,   Catalase↑,1,   CHOP↓,1,   GPx↓,1,   GRP78/BiP↓,1,   HO-1↑,2,   Inflam↓,1,   lipid-P↓,1,   MDA↓,2,   NRF2↑,2,   RenoP↑,1,   ROS↓,1,   SOD↑,2,  
Total Targets: 17

Scientific Paper Hit Count for: HO-1, HMOX1
3 Boron
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:46  Target#:597  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page