condition found tbRes List
Bor, Boron: Click to Expand ⟱
Features: micronutrient
Boron is a trace mineral.
Used in treating yeast infections, improving athletic performance, or preventing osteoporosis.

Current research suggests that boric acid can modulate intercellular calcium levels—with potential implications for cancer therapy—by:
-Altering calcium channel activity and calcium influx,
-Modifying downstream calcium-dependent signaling, and
-Inducing apoptotic pathways preferentially in cancer cells due to their altered calcium handling dynamics.
Abnormal increases in [Ca²⁺]ᵢ can trigger mitochondrial dysfunction and activate calcium-dependent apoptotic pathways. Boric acid has been observed in some cell culture studies to induce apoptosis in cancer cells.
In normal cells, modest changes in [Ca²⁺]ᵢ induced by boric acid may not reach a threshold that triggers apoptosis or other stress responses. This could lead to a relative sparing of normal cells compared to cancer cells.

Pathways:
1.Calcium Signaling Pathway
In many cases, boron appears to normalize dysregulated calcium levels in cancer cells, often leading to an increase in calcium levels that can trigger calcium-dependent apoptotic pathways. 2.Apoptotic Pathways (Intrinsic and Extrinsic).
Direction of Modulation:
• Boron compounds may enhance the activation of apoptotic cascades.
• Typically, an increase in intracellular calcium (as noted above) can further lead to mitochondrial dysfunction, cytochrome c release, and subsequent caspase activation, thereby promoting apoptosis.
3.PI3K/AKT/mTOR Pathway
• Some studies indicate that boron-containing compounds can inhibit this pathway.
• Inhibition of PI3K/AKT/mTOR signaling reduces survival signals and can decrease cellular proliferation and growth in tumor cell.
4.MAPK/ERK Pathway
Boron may modulate the MAPK/ERK cascade by either dampening overactive mitogenic signals or altering the stress response.
• This modulation can lead to reduced proliferation signals and may promote cell cycle arrest in cancer cells.
5.NF-κB Signaling Pathway
• Some reports indicate that boron compounds can suppress NF-κB activity.
• This suppression might be achieved indirectly through modulation of upstream signals (such as changes in calcium or the cellular redox status) leading to decreased transcription of pro-survival and pro-inflammatory genes.
6.Wnt/β-Catenin Pathway
• Inhibition of Wnt/β-catenin signaling may interfere with proliferation and the maintenance of cancer stem cell populations.

ROS:
-ROS induction may be dose related.
-Some studies report that when boron compounds are combined with other treatments (like chemotherapy or radiotherapy), there is a synergistic increase in ROS generation.
Boron’s effects in a cancer context generally lean toward:
• Normalizing dysregulated calcium signaling to push cells toward apoptotic death
• Inhibiting pro-survival pathways such as PI3K/AKT/mTOR and NF-κB

(1) is essential for the growth and maintenance of bone;
(2) greatly improves wound healing;
(3) beneficially impacts the body's use of estrogen, testosterone, and vitamin D;
(4) boosts magnesium absorption;
(5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α);
(6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase;
(7) protects against pesticide-induced oxidative stress and heavy-metal toxicity;
(8) improves the brains electrical activity, cognitive performance, and short-term memory for elders;
(9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD(+));
(10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin's lymphoma; and
(11) may help ameliorate the adverse effects of traditional chemotherapeutic agents.

-Note half-life 21 hrs average
BioAv very high, 85-100%
Pathways:
- induce ROS productionin cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑,(contrary) Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,(contrary) HSP↓,
- Debateable if Lowers AntiOxidant defense in Cancer Cells: NRF2↓(most contrary), SOD↓(some contrary), GSH↓, Catalase↓(some contrary), HO1↓(contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, IGF-1↓, VEGF↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, HSP↓,
- some indication of Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓,
- small indication of inhibiting glycolysis : HIF-1α↓, cMyc↓, GRP78↑, Glucose↓,
- small indication of inhibiting angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Rho, Rho GTPases: Click to Expand ⟱
Source:
Type:
The Rho GTPases RhoA, Rac1, and Cdc42 are important regulators of cytoskeletal dynamics. small GTPase Ras homolog gene family member A (RHOA)
RHOA: Ras homolog family member A
Many in vitro and in vivo data indicate tumor-promoting effects of activated Rho GTPases, also tumor suppressive functions have been described.
In many cancers, RhoA and RhoC are often found to be overexpressed.
RhoB expression can be downregulated in certain cancers, which may contribute to tumor progression. Unlike RhoA and RhoC, RhoB is often considered a tumor suppressor, and its loss can lead to increased cell proliferation and survival.
-RhoA activity has been linked to the modulation of EMT, influencing both the disassembly of cell–cell junctions and the reorganization of the cytoskeleton necessary for migration.
-Elevated levels or hyperactivation of RhoA has been associated with poor prognosis in several cancers.


Scientific Papers found: Click to Expand⟱
757- Bor,    Phenylboronic acid is a more potent inhibitor than boric acid of key signaling networks involved in cancer cell migration
- in-vitro, Pca, DU145 - in-vitro, Nor, RWPE-1
Rho↓, RhoA, but not in normal RWPE-1 prostate cells
Rac1↓, but not in normal RWPE-1 prostate cells
Cdc42↓, but not in normal RWPE-1 prostate cells
*eff↑, RhoA, Rac1, and Cdc42 activity is decreased in prostate cancer cells but not in normal prostate cells.

746- Bor,    Organoboronic acids/esters as effective drug and prodrug candidates in cancer treatments: challenge and hope
- Review, NA, NA
eff↑, newly developed boron-containing compounds have already demonstrated highly promising activities
*toxicity↓, Boronic acid/ester has been successfully incorporated into cancer treatments and therapy mainly due to its remarkable oxophilicity and low toxicity levels in the body
ROS↑, can trigger tumour microenvironmental abnormalities such as high levels of reactive oxygen species (ROS) and overexpressed enzymes
LAT↓, boron accumulation were observed to counterpart LAT-1 expression in a bone metastasis model of breast cancer
AntiCan↑, high concentration of boron in males reduces the probability of prostate cancer by 54% compared to males with low boron concentrations
AR↓, bortezomib
PSMB5↓, bortezomib
IGF-1↓, insulin-like growth factor 1 (IGF-1) in tumours was markedly reduced by boric acid.
PSA↓, exposure to both low-and high-dose boron supplementation, prostate-specific antigen (PSA) levels dropped by an average of 87%, while tumour size declined by an average of 31.5%
TumVol↓,
eff↑, phenylboronic acid is a more potent inhibitor than boric acid in targeting metastatic and proliferative properties of prostate cancer cells
Rho↓, RhoA, Rac1
Cdc42↓,
Ca+2↓, ER Ca+2 depletion occurred after the treatment of DU-145 prostate cancer cells with the physiological concentrations of boric acid
eff↑, boric acid (BA), sodium pentaborate pentahydrate (NaB), and sodium perborate tetrahydrate (SPT) against SCLC cell line using DMS-114 cells


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
AntiCan↑,1,   AR↓,1,   Ca+2↓,1,   Cdc42↓,2,   eff↑,3,   IGF-1↓,1,   LAT↓,1,   PSA↓,1,   PSMB5↓,1,   Rac1↓,1,   Rho↓,2,   ROS↑,1,   TumVol↓,1,  
Total Targets: 13

Results for Effect on Normal Cells:
eff↑,1,   toxicity↓,1,  
Total Targets: 2

Scientific Paper Hit Count for: Rho, Rho GTPases
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:46  Target#:273  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page