condition found tbRes List
Bor, Boron: Click to Expand ⟱
Features: micronutrient
Boron is a trace mineral.
Used in treating yeast infections, improving athletic performance, or preventing osteoporosis.

Current research suggests that boric acid can modulate intercellular calcium levels—with potential implications for cancer therapy—by:
-Altering calcium channel activity and calcium influx,
-Modifying downstream calcium-dependent signaling, and
-Inducing apoptotic pathways preferentially in cancer cells due to their altered calcium handling dynamics.
Abnormal increases in [Ca²⁺]ᵢ can trigger mitochondrial dysfunction and activate calcium-dependent apoptotic pathways. Boric acid has been observed in some cell culture studies to induce apoptosis in cancer cells.
In normal cells, modest changes in [Ca²⁺]ᵢ induced by boric acid may not reach a threshold that triggers apoptosis or other stress responses. This could lead to a relative sparing of normal cells compared to cancer cells.

Pathways:
1.Calcium Signaling Pathway
In many cases, boron appears to normalize dysregulated calcium levels in cancer cells, often leading to an increase in calcium levels that can trigger calcium-dependent apoptotic pathways. 2.Apoptotic Pathways (Intrinsic and Extrinsic).
Direction of Modulation:
• Boron compounds may enhance the activation of apoptotic cascades.
• Typically, an increase in intracellular calcium (as noted above) can further lead to mitochondrial dysfunction, cytochrome c release, and subsequent caspase activation, thereby promoting apoptosis.
3.PI3K/AKT/mTOR Pathway
• Some studies indicate that boron-containing compounds can inhibit this pathway.
• Inhibition of PI3K/AKT/mTOR signaling reduces survival signals and can decrease cellular proliferation and growth in tumor cell.
4.MAPK/ERK Pathway
Boron may modulate the MAPK/ERK cascade by either dampening overactive mitogenic signals or altering the stress response.
• This modulation can lead to reduced proliferation signals and may promote cell cycle arrest in cancer cells.
5.NF-κB Signaling Pathway
• Some reports indicate that boron compounds can suppress NF-κB activity.
• This suppression might be achieved indirectly through modulation of upstream signals (such as changes in calcium or the cellular redox status) leading to decreased transcription of pro-survival and pro-inflammatory genes.
6.Wnt/β-Catenin Pathway
• Inhibition of Wnt/β-catenin signaling may interfere with proliferation and the maintenance of cancer stem cell populations.

ROS:
-ROS induction may be dose related.
-Some studies report that when boron compounds are combined with other treatments (like chemotherapy or radiotherapy), there is a synergistic increase in ROS generation.
Boron’s effects in a cancer context generally lean toward:
• Normalizing dysregulated calcium signaling to push cells toward apoptotic death
• Inhibiting pro-survival pathways such as PI3K/AKT/mTOR and NF-κB

(1) is essential for the growth and maintenance of bone;
(2) greatly improves wound healing;
(3) beneficially impacts the body's use of estrogen, testosterone, and vitamin D;
(4) boosts magnesium absorption;
(5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α);
(6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase;
(7) protects against pesticide-induced oxidative stress and heavy-metal toxicity;
(8) improves the brains electrical activity, cognitive performance, and short-term memory for elders;
(9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD(+));
(10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin's lymphoma; and
(11) may help ameliorate the adverse effects of traditional chemotherapeutic agents.

-Note half-life 21 hrs average
BioAv very high, 85-100%
Pathways:
- induce ROS productionin cancer cells, while reducing ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑,(contrary) Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,(contrary) HSP↓,
- Debateable if Lowers AntiOxidant defense in Cancer Cells: NRF2↓(most contrary), SOD↓(some contrary), GSH↓, Catalase↓(some contrary), HO1↓(contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, IGF-1↓, VEGF↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, HSP↓,
- some indication of Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓,
- small indication of inhibiting glycolysis : HIF-1α↓, cMyc↓, GRP78↑, Glucose↓,
- small indication of inhibiting angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


hepatoP, L,hepatoprotective: Click to Expand ⟱
Source:
Type:
Hepatoprotective is the ability of a chemical substance to prevent damage to the liver.

Grapefruit:
-hepatoprotective potential has emerged from the study of naringenin and naringin.
Blueberries/cranberries:
-proanthocyanidins
Grape:
Nopal (Cactus pear) and tuna (Cactus pear fruit) “Opuntia ficus-indica”:
Chamomile (Matricaria chamomilla or Chamomilla recutita):
Silymarin (Silybum marianum):
Blue green algae spirulina :
Propolis (bee glue):

POLYSACCHARIDES
β-glucans


Scientific Papers found: Click to Expand⟱
3520- Bor,    Effect of boron element on photoaging in rats
- in-vivo, NA, NA
*hepatoP↑, to positively affect the liver metabolism, and to promote bone density, embryogenic development and wound healing, and is known to provide significant benefits in cancer treatment through neutron capture systems
*BMD↑,
*COX2↓, Increased skin inflammatory parameters (COX-2, IL-8, NF-KB, IL-6, and TNF-α) levels in UVB-exposed groups were inhibited in all treatment groups
*IL8↓,
*NF-kB↓,
*IL6↓,
*TNF-α↓,

3517- Bor,  Se,    The protective effects of selenium and boron on cyclophosphamide-induced hepatic oxidative stress, inflammation, and apoptosis in rats
- in-vivo, Nor, NA
*hepatoP↑, However, it was found that Se protects the liver slightly better against CP damage than B
*ALAT↓, statistically significant difference was observed in the serum levels of ALT, AST, ALP, TAS, TOS and OSI.
*AST↓,
*ALP↓,
*NF-kB↓, A statistically significant difference was observed in serum levels of NF-kB, TNF-α, IL -1β, IL -6 and IL -10 when the Se + CP and B + CP-treated groups were compared with the CP-treated group
*TNF-α↓, fig 9
*IL1β↓,
*IL6↓,
*IL10↑,
*SOD↑, A statistically remarkable change in serum levels of SOD, CAT, GPx, MDA and GSH was observed in the group receiving only CP compared to groups Se, B and the control.
*Catalase↑,
*MDA↓, Fig 10
*GSH↑,
*GPx↑,
*antiOx↑, suggests that B and Se increase intracellular antioxidant status.
*NRF2↑, Se and B treatment can protect rat liver tissue from CP-induced oxidative stress, inflammation, and apoptosis by regulating Bax/Bcl-2 and Nrf2-Keap-1 signaling pathways.
*Keap1↓,

3516- Bor,    Boron in wound healing: a comprehensive investigation of its diverse mechanisms
- Review, Wounds, NA
*Inflam↓, anti-inflammatory, antimicrobial, antioxidant, and pro-proliferative effects.
*antiOx↑,
*ROS↓, The antioxidant properties of boron help protect cells from oxidative stress, a common feature of chronic wounds that can impair healing
*angioG↑, Boron compounds exhibit diverse therapeutic actions in wound healing, including antimicrobial effects, inflammation modulation, oxidative stress reduction, angiogenesis induction, and anti-fibrotic properties.
*COL1↑, Boron has been shown to increase the expression of proteins involved in wound contraction and matrix remodeling, such as collagen, alpha-smooth muscle actin, and transforming growth factor-beta1.
*α-SMA↑,
*TGF-β↑,
*BMD↑, Animals treated with boron showed favorable changes in bone density, wound healing, embryonic development, and liver metabolism
*hepatoP↑,
*TNF-α↑, BA elevates TNF-α and heat-shock proteins 70 that are related to wound healing.
*HSP70/HSPA5↑,
*SOD↑, antioxidant properties of BA showed that boron protects renal tissue from I/R injury via increasing SOD, CAT, and GSH and decreasing MDA and total oxidant status (TOS)
*Catalase↑,
*GSH↑,
*MDA↓,
*TOS↓,
*IL6↓, Boron supports gastric tissue by alleviating ROS, MDA, IL-6, TNF-α, and JAK2/STAT3 action, as well as improving AMPK activity
*JAK2↓,
*STAT3↓,
*AMPK↑,
*lipid-P↓, boron may improve wound healing by hindering lipid peroxidation and increasing the level of VEGF
*VEGF↑,
*Half-Life↝, Boron is a trace element, usually found at a concentration of 0–0.2 mg/dL in plasma with a half-life of 5–10 h, and 1–2 mg of it is needed in the daily diet


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:

Total Targets: 0

Results for Effect on Normal Cells:
ALAT↓,1,   ALP↓,1,   AMPK↑,1,   angioG↑,1,   antiOx↑,2,   AST↓,1,   BMD↑,2,   Catalase↑,2,   COL1↑,1,   COX2↓,1,   GPx↑,1,   GSH↑,2,   Half-Life↝,1,   hepatoP↑,3,   HSP70/HSPA5↑,1,   IL10↑,1,   IL1β↓,1,   IL6↓,3,   IL8↓,1,   Inflam↓,1,   JAK2↓,1,   Keap1↓,1,   lipid-P↓,1,   MDA↓,2,   NF-kB↓,2,   NRF2↑,1,   ROS↓,1,   SOD↑,2,   STAT3↓,1,   TGF-β↑,1,   TNF-α↓,2,   TNF-α↑,1,   TOS↓,1,   VEGF↑,1,   α-SMA↑,1,  
Total Targets: 35

Scientific Paper Hit Count for: hepatoP, L,hepatoprotective
3 Boron
1 Selenium
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:46  Target#:1179  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page