condition found tbRes List
Bos, Boswellia (frankincense): Click to Expand ⟱
Features:
Boswellia is an herbal extract from the Boswellia serrata tree that may help reduce inflammation.
May help with rheumatoid arthritis, inflammatory bowel disease, asthma, and cancer.
-Naturally occurring pentacyclic triterpenoids include ursolic acid (UA), oleanolic acid (OA), betulinic acid (BetA), bosewellic acid (BA), Asiatic acid (AA), α-amyrin, celastrol, glycyrrhizin, 18-β-glycyrrhetinic acid, lupeol, escin, madecassic acid, momordin I, platycodon D, pristimerin, saikosaponins, soyasapogenol B, and avicin
Boswellia refers to a group of resinous extracts obtained from Boswellia trees (e.g., Boswellia serrata). Traditionally used in Ayurvedic and traditional Chinese medicine, Boswellia is reputed for its anti-inflammatory, analgesic, and immunomodulatory properties. Its bioactive components—such as boswellic acids.
-Anti-inflammatory Activity (blocking the enzyme 5-lipoxygenase) 5LOX↓,.
-AKBA used to reduce Methionine ***** (help in Methionine reduced diet)
Boswellia extracts are often administered in doses ranging from 300 mg to 1,200 mg per day

AKBA (Acetyl-11-keto-β-boswellic acid) is a bioactive compound derived from Boswellia serrata, a plant used traditionally for its anti-inflammatory properties. (upto 30% AKBA in Boswellia MEGA AKBA)
AKBA also available in Inflasanum @ 90% AKDA (MCSformulas)

-Note half-life reports vary 2.5-90hrs?.
BioAv
Pathways:
- induce or lower ROS production (not consistant increase for cancer cells)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,
- Raises AntiOxidant defense in Normal Cells: ROS↓">ROS, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, VEGF↓, NF-κB↓, CXCR4↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, TOP1↓,
- inhibits angiogenesis↓ : VEGF↓, Notch↓, PDGF↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Hepatoprotective,

- Selectivity: Cancer Cells vs Normal Cells


ROS, Reactive Oxygen Species: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
Reactive oxygen species (ROS) are highly reactive molecules that contain oxygen and can lead to oxidative stress in cells. They play a dual role in cancer biology, acting as both promoters and suppressors of cancer.
ROS can cause oxidative damage to DNA, leading to mutations that may contribute to cancer initiation and progression. So normally you want to inhibit ROS to prevent cell mutations.
However excessive ROS can induce apoptosis (programmed cell death) in cancer cells, potentially limiting tumor growth. Chemotherapy typically raises ROS.

"Reactive oxygen species (ROS) are two electron reduction products of oxygen, including superoxide anion, hydrogen peroxide, hydroxyl radical, lipid peroxides, protein peroxides and peroxides formed in nucleic acids 1. They are maintained in a dynamic balance by a series of reduction-oxidation (redox) reactions in biological systems and act as signaling molecules to drive cellular regulatory pathways."
"During different stages of cancer formation, abnormal ROS levels play paradoxical roles in cell growth and death 8. A physiological concentration of ROS that maintained in equilibrium is necessary for normal cell survival. Ectopic ROS accumulation promotes cell proliferation and consequently induces malignant transformation of normal cells by initiating pathological conversion of physiological signaling networks. Excessive ROS levels lead to cell death by damaging cellular components, including proteins, lipid bilayers, and chromosomes. Therefore, both scavenging abnormally elevated ROS to prevent early neoplasia and facilitating ROS production to specifically kill cancer cells are promising anticancer therapeutic strategies, in spite of their contradictoriness and complexity."
"ROS are the collection of derivatives of molecular oxygen that occur in biology, which can be categorized into two types, free radicals and non-radical species. The non-radical species are hydrogen peroxide (H 2O 2 ), organic hydroperoxides (ROOH), singlet molecular oxygen ( 1 O 2 ), electronically excited carbonyl, ozone (O3 ), hypochlorous acid (HOCl, and hypobromous acid HOBr). Free radical species are super-oxide anion radical (O 2•−), hydroxyl radical (•OH), peroxyl radical (ROO•) and alkoxyl radical (RO•) [130]. Any imbalance of ROS can lead to adverse effects. H2 O 2 and O 2 •− are the main redox signalling agents. The cellular concentration of H2 O 2 is about 10−8 M, which is almost a thousand times more than that of O2 •−".
"Radicals are molecules with an odd number of electrons in the outer shell [393,394]. A pair of radicals can be formed by breaking a chemical bond or electron transfer between two molecules."

Recent investigations have documented that polyphenols with good antioxidant activity may exhibit pro-oxidant activity in the presence of copper ions, which can induce apoptosis in various cancer cell lines but not in normal cells. "We have shown that such cell growth inhibition by polyphenols in cancer cells is reversed by copper-specific sequestering agent neocuproine to a significant extent whereas iron and zinc chelators are relatively ineffective, thus confirming the role of endogenous copper in the cytotoxic action of polyphenols against cancer cells. Therefore, this mechanism of mobilization of endogenous copper." > Ions could be one of the important mechanisms for the cytotoxic action of plant polyphenols against cancer cells and is possibly a common mechanism for all plant polyphenols. In fact, similar results obtained with four different polyphenolic compounds in this study, namely apigenin, luteolin, EGCG, and resveratrol, strengthen this idea.
Interestingly, the normal breast epithelial MCF10A cells have earlier been shown to possess no detectable copper as opposed to breast cancer cells [24], which may explain their resistance to polyphenols apigenin- and luteolin-induced growth inhibition as observed here (Fig. 1). We have earlier proposed [25] that this preferential cytotoxicity of plant polyphenols toward cancer cells is explained by the observation made several years earlier, which showed that copper levels in cancer cells are significantly elevated in various malignancies. Thus, because of higher intracellular copper levels in cancer cells, it may be predicted that the cytotoxic concentrations of polyphenols required would be lower in these cells as compared to normal cells."

Majority of ROS are produced as a by-product of oxidative phosphorylation, high levels of ROS are detected in almost all cancers.
-It is well established that during ER stress, cytosolic calcium released from the ER is taken up by the mitochondrion to stimulate ROS overgeneration and the release of cytochrome c, both of which lead to apoptosis.

Note: Products that may raise ROS can be found using this database, by:
Filtering on the target of ROS, and selecting the Effect Direction of ↑

Targets to raise ROS (to kill cancer cells):
• NADPH oxidases (NOX): NOX enzymes are involved in the production of ROS.
    -Targeting NOX enzymes can increase ROS levels and induce cancer cell death.
    -eNOX2 inhibition leads to a high NADH/NAD⁺ ratio which can lead to increased ROS
• Mitochondrial complex I: Inhibiting can increase ROS production
• P53: Activating p53 can increase ROS levels(by inducing the expression of pro-oxidant genes)
• Nrf2: regulates the expression of antioxidant genes. Inhibiting Nrf2 can increase ROS levels
• Glutathione (GSH): an antioxidant. Depleting GSH can increase ROS levels
• Catalase: Catalase converts H2O2 into H2O+O. Inhibiting catalase can increase ROS levels
• SOD1: converts superoxide into hydrogen peroxide. Inhibiting SOD1 can increase ROS levels
• PI3K/AKT pathway: regulates cell survival and metabolism. Inhibiting can increase ROS levels
• HIF-1α: regulates genes involved in metabolism and angiogenesis. Inhibiting HIF-1α can increase ROS
• Glycolysis: Inhibiting glycolysis can increase ROS levels • Fatty acid oxidation: Cancer cells often rely on fatty acid oxidation for energy production.
-Inhibiting fatty acid oxidation can increase ROS levels
• ER stress: Endoplasmic reticulum (ER) stress can increase ROS levels
• Autophagy: process by which cells recycle damaged organelles and proteins.
-Inhibiting autophagy can increase ROS levels and induce cancer cell death.
• KEAP1/Nrf2 pathway: regulates the expression of antioxidant genes.
    -Inhibiting KEAP1 or activating Nrf2 can increase ROS levels and induce cancer cell death.
• DJ-1: regulates the expression of antioxidant genes. Inhibiting DJ-1 can increase ROS levels
• PARK2: regulates the expression of antioxidant genes. Inhibiting PARK2 can increase ROS levels
• SIRT1:regulates the expression of antioxidant genes. Inhibiting SIRT1 can increase ROS levels
• AMPK: regulates energy metabolism and can increase ROS levels when activated.
• mTOR: regulates cell growth and metabolism. Inhibiting mTOR can increase ROS levels
• HSP90: regulates protein folding and can increase ROS levels when inhibited.
• Proteasome: degrades damaged proteins. Inhibiting the proteasome can increase ROS levels
• Lipid peroxidation: a process by which lipids are oxidized, leading to the production of ROS.
    -Increasing lipid peroxidation can increase ROS levels
• Ferroptosis: form of cell death that is regulated by iron and lipid peroxidation.
    -Increasing ferroptosis can increase ROS levels
• Mitochondrial permeability transition pore (mPTP): regulates mitochondrial permeability.
    -Opening the mPTP can increase ROS levels
• BCL-2 family proteins: regulate apoptosis and can increase ROS levels when inhibited.
• Caspase-independent cell death: a form of cell death that is regulated by ROS.
    -Increasing caspase-independent cell death can increase ROS levels
• DNA damage response: regulates the repair of DNA damage. Increasing DNA damage can increase ROS
• Epigenetic regulation: process by which gene expression is regulated.
    -Increasing epigenetic regulation can increase ROS levels

-PKM2, but not PKM1, can be inhibited by direct oxidation of cysteine 358 as an adaptive response to increased intracellular reactive oxygen species (ROS)

ProOxidant Strategy:(inhibit the Melavonate Pathway (likely will also inhibit GPx)
-HydroxyCitrate (HCA) found as supplement online and typically used in a dose of about 1.5g/day or more
-Atorvastatin typically 40-80mg/day
-Dipyridamole typically 200mg 2x/day
-Lycopene typically 100mg/day range

Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy

Scientific Papers found: Click to Expand⟱
1448- Bos,    A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells
- in-vitro, AML, HL-60
TumCP↓,
Apoptosis↑,
ROS↑, initial events involved massive reactive oxygen species (ROS) and nitric oxide (NO) formation
NO↑,
cl‑Bcl-2↑,
BAX↑, translocation of Bax to mitochondria
MMP↓, loss of mitochondrial membrane potential
Cyt‑c↑, release of cytochrome c to the cytosol
AIF↑, release to the cytosol
Diablo↑, release to the cytosol
survivin↓,
ICAD↓,
Casp↑,
cl‑PARP↑,
DR4↑,
TNFR 1↑,

2778- Bos,    Development, Analytical Characterization, and Bioactivity Evaluation of Boswellia serrata Extract-Layered Double Hydroxide Hybrid Composites
- in-vitro, Nor, NA
*ATP↓, this extract is largely composed of terpene substances that are known to be able to bind to the membrane, thus causing the formation of irreversible pores, and they can lower protein synthesis, reducing ATP consumption
*ROS↓, well-known scavenger ability of the boswellic acids [49,50] was expected to significantly reduce the amount of the cytotoxic oxygen- and nitrogen-derived (ROS)

2777- Bos,    Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage
- in-vitro, IBD, NA
*p‑NF-kB↓, BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-κB phosphorylation induced by the inflammatory stimuli.
*ROS↓, At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure.
Inflam↓, BSE, in protecting intestinal epithelial barrier from inflammatory damage and supports its use as safe adjuvant in patients affected by IBD.

2776- Bos,    Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities
- Review, Var, NA
*5LO↓, Arthritis Human primary chondrocytes: 5-LOX↓, TNF-α↓, MMP3↓
*TNF-α↓,
*MMP3↓,
*COX1↓, COX-1↓, Leukotriene synthesis by 5-LOX↓
*COX2↓, Arthritis Human blood in vitro: COX-2↓, PGE2↓, TH1 cytokines↓, TH2 cytokines↑
*PGE2↓,
*Th2↑,
*Catalase↑, Ethanol-induced gastric ulcer: CAT↑, SOD↑, NO↑, PGE-2↑
*SOD↑,
*NO↑,
*PGE2↑,
*IL1β↓, inflammation Human PBMC, murine RAW264.7 macrophages: TNFα↓ IL-1β↓, IL-6↓, Th1 cytokines (IFNγ, IL-12)↓, Th2 cytokines (IL-4, IL-10)↑; iNOS↓, NO↓, phosphorylation of JNK and p38↓
*IL6↓,
*Th1 response↓,
*Th2↑,
*iNOS↓,
*NO↓,
*p‑JNK↓,
*p38↓,
GutMicro↑, colon carcinogenesis: gut microbiota; pAKT↓, GSK3β↓, cyclin D1↓
p‑Akt↓,
GSK‐3β↓,
cycD1↓,
Akt↓, Prostate Ca: AKT and STAT3↓, stemness markers↓, androgen receptor↓, Sp1 promoter binding↓, p21(WAF1/CIP1)↑, cyclin D1↓, cyclin D2↓, DR5↑,CHOP↑, caspases-3/-8↑, PARP cleavage, NFκB↓, IKK↓, Bcl-2↓, Bcl-xL↓, caspase 3↑, DNA
STAT3↓,
CSCs↓,
AR↓,
P21↑,
DR5↑,
CHOP↑,
Casp3↑,
Casp8↑,
cl‑PARP↑,
DNAdam↑,
p‑RB1↓, Glioblastoma: pRB↓, FOXM1↓, PLK1↓, Aurora B/TOP2A pathway↓,CDC25C↓, pCDK1↓, cyclinB1↓, Aurora B↓, TOP2A↓, pERK-1/-2↓
Foxm1↓,
TOP2↓,
CDC25↓,
p‑CDK1↓,
p‑ERK↓,
MMP9↓, Pancreas Ca: Ki-67↓, CD31↓, COX-2↓, MMP-9↓, CXCR4↓, VEGF↓
VEGF↓,
angioG↓, Apoptosis↑, G2/M arrest, angiogenesis↓
ROS↑, ROS↑,
Cyt‑c↑, Leukemia : cytochrome c↑, AIF↑, SMAC/DIABLO↑, survivin↓, ICAD↓
AIF↑,
Diablo↑,
survivin↓,
ICAD↓,
ChemoSen↑, Breast Ca: enhancement in combination with doxorubicin
SOX9↓, SOX9↓
ER Stress↑, Cervix Ca : ER-stress protein GRP78↑, CHOP↑, calpain↑
GRP78/BiP↑,
cal2↓,
AMPK↓, Breast Ca: AMPK/mTOR signaling↓
mTOR↓,
ROS↓, Boswellia extracts and its phytochemicals reduced oxidative stress (in terms of inhibition of ROS and RNS generation)

2775- Bos,    The journey of boswellic acids from synthesis to pharmacological activities
- Review, Var, NA - Review, AD, NA - Review, PSA, NA
ROS↑, modulation of reactive oxygen species (ROS) formation and the resulting endoplasmic reticulum stress is central to BA’s molecular and cellular anticancer activities
ER Stress↑,
TumCG↓, Cell cycle arrest, growth inhibition, apoptosis induction, and control of inflammation are all the effects of BA’s altered gene expression
Apoptosis↑,
Inflam↓,
ChemoSen↑, BA has additional synergistic effects, increasing both the sensitivity and cytotoxicity of doxorubicin and cisplatin
Casp↑, BA decreases viability and induces apoptosis by activat- ing the caspase-dependent pathway in human pancreatic cancer (PC) cell lines
ERK↓, BA might inhibit the activation of Ak strain transforming (Akt) and extracellular signal–regulated kinase (ERK)1/2,
cl‑PARP↑, initiation of cleavage of PARP were prompted by the treatment with AKBA
AR↓, AKBA affects the androgen receptor by reducing its expression,
cycD1↓, decrease in cyclin D1, which inhibits cellular proliferation
VEGFR2↓, In prostate cancer, the downregulation of vascular endothelial growth factor receptor 2–mediated angiogenesis caused by BA
CXCR4↓, Figure 6
radioP↑,
NF-kB↓,
VEGF↓,
P21↑,
Wnt↓,
β-catenin/ZEB1↓,
Cyt‑c↑,
MMP2↓,
MMP1↓,
MMP9↓,
PI3K↓,
MAPK↓,
JNK↑,
*5LO↓, Table 1 (non cancer)
*NRF2↑,
*HO-1↑,
*MDA↓,
*SOD↑,
*hepatoP↑, Preclinical studies demonstrated hepatoprotective impact for BA against different models of hepatotoxicity via tackling oxidative stress, and inflammatory and apoptotic indices
*ALAT↓,
*AST↓,
*LDH↑,
*CRP↓,
*COX2↓,
*GSH↑,
*ROS↓,
*Imm↑, oral administration of biopolymeric fraction (BOS 200) from B. serrata in mice led to immunostimulatory effects
*Dose↝, BA at low concentration tend to stimulate an immune response, as those utilized in the study of Beghelli et al. (2017) however, utilizing higher concentration suppressed the immune response
*eff↑, Useful actions on skin and psoriasis
*neuroP↑, AKBA has substantially diminished the levels of inflammatory markers such as 5-LOX, TNF-, IL-6, and meliorated cognition in lipopolysaccharide-induced neuroinflammation rodent models
*cognitive↑,
*IL6↓,
*TNF-α↓,

2774- Bos,    Boswellia ovalifoliolata abrogates ROS mediated NF-κB activation, causes apoptosis and chemosensitization in Triple Negative Breast Cancer cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-453
ChemoSen↑, BL EthOH has synergistic chemosensitizing effects on TNBC cells and increased the cytotoxicity of doxorubicin and cisplatin
Casp3↑, BL EthOH caused 5 folds and 6 folds increase of caspase 3 levels in both MDA-MB-231 and MDA-MB-453 cells respectively when compared with the untreated control cells
ROS↓, treatment with plant extract significantly inhibited the H 2 O2 induced ROS generation in both MDA-MB-231 and MDA-MB-453 cells.
NF-kB↓, The expression of phospho-NF-kB (ser536) decreased dose dependently in MDA-MB-231and MDA-MB-453cells after treatment with BL EthOH.

2772- Bos,    Mechanistic role of boswellic acids in Alzheimer’s disease: Emphasis on anti-inflammatory properties
- Review, AD, NA
*neuroP↑, (AKBA) that possess potent anti-inflammatory and neuroprotective properties in AD
*Inflam↓,
*AChE↓, inhibiting the acetylcholinesterase (AChE) activity in the cholinergic pathway and improve choline levels
*Choline↑,
*NRF2↑, BAs modulate key molecular targets and signalling pathways like 5-lipoxygenase/cyclooxygenase, Nrf2, NF-kB, cholinergic, amyloid-beta (Aβ), and neurofibrillary tangles formation (NFTs) that are involved in AD
*NF-kB↑,
*BBB↑, AKBA has efficiently abled to cross the blood brain barrier (BBB)
*BioAv↑, bioavailability of AKBA was significantly higher in case of sublingual route when compared to intranasal administration, as demonstrated by area under curves (AUCs) analysis
*Half-Life↓, half-life of the drug was about six hours and peak plasma levels of the drug reach 30 hrs after oral administration of 333 mg of BSE.
*Dose↝, drug needs to be administered at a dosing interval of 6 hrs
*PGE2↓, BAs possessed anti-inflammatory activity by inhibiting microsomal prostaglandin E2 synthase-1 (mPGES1)
*ROS↓, prevented oxidative stress-induced neuronal damage and cognitive impairment because of the antioxidant, anti-inflammatory and anti-glutamatergic effects
*cognitive↑,
*antiOx↑,
5LO↓, AKBA significantly reduced pro-inflammatory mediators such as 5-LOX, TNF-α, IL-6 levels and improve cognition
*TNF-α↓,
*IL6↓,
*HO-1↑, AKBA shows neuroprotective effects against ischaemic injury via nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) cascade activation

2768- Bos,    Boswellic acids as promising agents for the management of brain diseases
- Review, Var, NA - Review, AD, NA - Review, Park, NA
*neuroP↑, BAs-induced neuroprotection is proposed to be associated with the ability to reduce neurotoxic aggregates, decrease oxidative stress, and improve cognitive dysfunction.
*ROS↓,
*cognitive↓,
TumCP↓, BAs have been suggested as potential agents for the treatment of brain tumors due to their potential to attenuate cell proliferation, migration, metastasis, angiogenesis, and promote apoptosis during both in vitro and in vivo studies
TumCMig↓,
TumMeta↓,
angioG↓,
Apoptosis↑,
*Inflam↓, The anti-inflammatory activities of BAs have been investigated in many preclinical and clinical trials
IL1↓, BAs inhibit the production of pro-inflammatory cytokines such as interleukin-1 (IL-1), IL-2, IL-4, IL-6, and tumor necrosis factor-α (TNF-α) in several experimental studies.
IL2↓,
IL4↓,
IL6↓,
TNF-α↓,
P53↑, AKBA has been reported to induce apoptosis in pancreatic and gastric cancers, through tumor suppressor protein 53 (p53)-independent pathway, while reducing expression of protein kinase (PK) B and NF-kb
Akt↓,
NF-kB↓,
DNAdam↑, DNA fragmentation, and activation of caspase cascade
Casp↑,
COX2↓, regulated genes such as cyclooxygenase-2 (COX-2), matrix metallopeptidase-9 (MMP-9), C-X-C motif chemokine receptor 4 (CXCR4), and vascular endothelial growth factor (VEGF)
MMP9↓,
CXCR4↓,
VEGF↓,
*SOD↑, BAs against oxidative injury has been shown in several cell lines and animal models [12], [13], [21]. BAs exert protective effects through the normalization of antioxidant enzyme levels, such as superoxide dismutase (SOD), catalase, and glutathione p
*Catalase↑,
*GPx↑,
*NRF2↑, Moreover, it can activate nuclear factor erythroid 2-related factor-2 (Nrf2)/antioxidant response element-regulated pathways

2024- Bos,    Antiproliferative and cell cycle arrest potentials of 3-O-acetyl-11-keto-β-boswellic acid against MCF-7 cells in vitro
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
MMP↓, mitochondrial membrane potential (ΔΨm) was reduced by increasing AKBA concentration with a significant release of cytochrome c.
Cyt‑c↑,
ROS↑, A significant increase in reactive oxygen species formation was observed. Compared with the untreated control, 1.32-, 1.61- and 2.44-fold ROS generation increases were achieved following 50, 100 and 200 µg mL−1 AKBA
Casp8↑, activated the production of caspase 8 and caspase 9 in a dose-dependent pattern
Casp9↑,
AntiTum↑, antitumoral activity against MCF-7 cells in a dose-dependent pattern with a reduction rate of 21.65 ± 6.63, 32.37 ± 6.97, 54.29 ± 5.35 and 61.42 ± 4.14% for the concentrations 50, 100, 200 and 400 µg mL−1, respectively
selectivity↑, cell inhibition rate with calculated IC50 of 101.1 and 275.2 for MCF-7 and MCF-10A, respectively
TumCCA↑, finally arrested the MCF-7 cell cycle at the G1 phase.

1450- Bos,  Cisplatin,    3-Acetyl-11-keto-β-boswellic acid (AKBA) induced antiproliferative effect by suppressing Notch signaling pathway and synergistic interaction with cisplatin against prostate cancer cells
- in-vitro, Pca, DU145
ROS↑, increased reactive oxygen species (ROS) generation
MMP↓,
Casp↑,
Apoptosis↑,
Bax:Bcl2↑,
TumCCA?, induce G0/G1 arrest
cycD1↓,
CDK4↓,
P21↑,
p27↑,
NOTCH↓, AKBA demonstrated significant downregulation of Notch signaling mediators
ChemoSen↑, AKBA has the potential to synergistically enhance the cytotoxic efficacy of cisplatin

1449- Bos,  Chemo,    Anti-proliferative, Pro-apoptotic, and Chemosensitizing Potential of 3-Acetyl-11-keto-β-boswellic Acid (AKBA) Against Prostate Cancer Cells
- in-vitro, Pca, PC3
TumCP↓,
ChemoSen↑, AKBA was also found to chemosensitize PC3 cells in synergistic combination with doxorubicin.
MMP↝,
ROS↝,
Apoptosis↑,

1447- Bos,    Boswellia carterii n-hexane extract suppresses breast cancer growth via induction of ferroptosis by downregulated GPX4 and upregulated transferrin
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vivo, BC, 4T1 - in-vitro, Nor, MCF10
tumCV↓,
AntiCan↑, BCHE exhibited potent anti-BC activity in vivo
*toxicity↓, no significant toxic effects
Ferroptosis↑,
i-Iron↑, intracellular accumulation of Fe2+
GPx4↓,
ROS↑, upregulation of reactive oxygen species
lipid-P↑, induced lipid peroxidation in BC cells
Tf↑, Transferrin upregulation in tumor-bearing mice
TumCG↓,

1425- Bos,    Protective Effect of Boswellic Acids against Doxorubicin-Induced Hepatotoxicity: Impact on Nrf2/HO-1 Defense Pathway
- in-vivo, Nor, NA
*ChemoSen↑, BAs significantly improved the altered liver enzyme activities and oxidative stress markers.
*NRF2↑, BAs increased the Nrf2 and HO-1 expression, which provided protection against DOX-induced oxidative insult
*HO-1↑,
*ROS↓, appear to scavenge ROS and inhibit lipid peroxidation and DNA damage of DOX-induced hepatotoxicity
*lipid-P↓,
*DNAdam↓,

1421- Bos,    Coupling of boswellic acid-induced Ca2+ mobilisation and MAPK activation to lipid metabolism and peroxide formation in human leucocytes
- in-vitro, AML, HL-60 - in-vitro, Nor, NA
ROS↑, AKBA and KBA strongly upregulated the formation of ROS, whereas β-BA and A-β-BA had only moderate effects
NADPH↝, AKBA-induced ROS formation involves NADPH oxidase, PI 3-K, and p42/44MAPK, and requires Ca2+
5LO↓, With respect to inhibition of 5-LO, 3-acetyl-11-keto-BA (AKBA) was the most potent BA, whereas BAs lacking an 11-keto-group were weak 5-LO inhibitor s
Ca+2↑, 11-keto-BAs potently stimulate the elevation of intracellular Ca2+ levels and activate p38 MAPK as well as p42MAPK
p38↑,
p42↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 14

Results for Effect on Cancer/Diseased Cells:
5LO↓,2,   AIF↑,2,   Akt↓,2,   p‑Akt↓,1,   AMPK↓,1,   angioG↓,2,   AntiCan↑,1,   AntiTum↑,1,   Apoptosis↑,5,   AR↓,2,   BAX↑,1,   Bax:Bcl2↑,1,   cl‑Bcl-2↑,1,   Ca+2↑,1,   cal2↓,1,   Casp↑,4,   Casp3↑,2,   Casp8↑,2,   Casp9↑,1,   CDC25↓,1,   p‑CDK1↓,1,   CDK4↓,1,   ChemoSen↑,5,   CHOP↑,1,   COX2↓,1,   CSCs↓,1,   CXCR4↓,2,   cycD1↓,3,   Cyt‑c↑,4,   Diablo↑,2,   DNAdam↑,2,   DR4↑,1,   DR5↑,1,   ER Stress↑,2,   ERK↓,1,   p‑ERK↓,1,   Ferroptosis↑,1,   Foxm1↓,1,   GPx4↓,1,   GRP78/BiP↑,1,   GSK‐3β↓,1,   GutMicro↑,1,   ICAD↓,2,   IL1↓,1,   IL2↓,1,   IL4↓,1,   IL6↓,1,   Inflam↓,2,   i-Iron↑,1,   JNK↑,1,   lipid-P↑,1,   MAPK↓,1,   MMP↓,3,   MMP↝,1,   MMP1↓,1,   MMP2↓,1,   MMP9↓,3,   mTOR↓,1,   NADPH↝,1,   NF-kB↓,3,   NO↑,1,   NOTCH↓,1,   P21↑,3,   p27↑,1,   p38↑,1,   p42↑,1,   P53↑,1,   cl‑PARP↑,3,   PI3K↓,1,   radioP↑,1,   p‑RB1↓,1,   ROS↓,2,   ROS↑,7,   ROS↝,1,   selectivity↑,1,   SOX9↓,1,   STAT3↓,1,   survivin↓,2,   Tf↑,1,   TNF-α↓,1,   TNFR 1↑,1,   TOP2↓,1,   TumCCA?,1,   TumCCA↑,1,   TumCG↓,2,   TumCMig↓,1,   TumCP↓,3,   tumCV↓,1,   TumMeta↓,1,   VEGF↓,3,   VEGFR2↓,1,   Wnt↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 93

Results for Effect on Normal Cells:
5LO↓,2,   AChE↓,1,   ALAT↓,1,   antiOx↑,1,   AST↓,1,   ATP↓,1,   BBB↑,1,   BioAv↑,1,   Catalase↑,2,   ChemoSen↑,1,   Choline↑,1,   cognitive↓,1,   cognitive↑,2,   COX1↓,1,   COX2↓,2,   CRP↓,1,   DNAdam↓,1,   Dose↝,2,   eff↑,1,   GPx↑,1,   GSH↑,1,   Half-Life↓,1,   hepatoP↑,1,   HO-1↑,3,   IL1β↓,1,   IL6↓,3,   Imm↑,1,   Inflam↓,2,   iNOS↓,1,   p‑JNK↓,1,   LDH↑,1,   lipid-P↓,1,   MDA↓,1,   MMP3↓,1,   neuroP↑,3,   NF-kB↑,1,   p‑NF-kB↓,1,   NO↓,1,   NO↑,1,   NRF2↑,4,   p38↓,1,   PGE2↓,2,   PGE2↑,1,   ROS↓,6,   SOD↑,3,   Th1 response↓,1,   Th2↑,2,   TNF-α↓,3,   toxicity↓,1,  
Total Targets: 49

Scientific Paper Hit Count for: ROS, Reactive Oxygen Species
14 Boswellia (frankincense)
1 Cisplatin
1 Chemotherapy
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:47  Target#:275  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page