condition found
Features: |
Boswellia is an herbal extract from the Boswellia serrata tree that may help reduce inflammation. May help with rheumatoid arthritis, inflammatory bowel disease, asthma, and cancer. -Naturally occurring pentacyclic triterpenoids include ursolic acid (UA), oleanolic acid (OA), betulinic acid (BetA), bosewellic acid (BA), Asiatic acid (AA), α-amyrin, celastrol, glycyrrhizin, 18-β-glycyrrhetinic acid, lupeol, escin, madecassic acid, momordin I, platycodon D, pristimerin, saikosaponins, soyasapogenol B, and avicin Boswellia refers to a group of resinous extracts obtained from Boswellia trees (e.g., Boswellia serrata). Traditionally used in Ayurvedic and traditional Chinese medicine, Boswellia is reputed for its anti-inflammatory, analgesic, and immunomodulatory properties. Its bioactive components—such as boswellic acids. -Anti-inflammatory Activity (blocking the enzyme 5-lipoxygenase) 5LOX↓,. -AKBA used to reduce Methionine ***** (help in Methionine reduced diet) Boswellia extracts are often administered in doses ranging from 300 mg to 1,200 mg per day AKBA (Acetyl-11-keto-β-boswellic acid) is a bioactive compound derived from Boswellia serrata, a plant used traditionally for its anti-inflammatory properties. (upto 30% AKBA in Boswellia MEGA AKBA) AKBA also available in Inflasanum @ 90% AKDA (MCSformulas) -Note half-life reports vary 2.5-90hrs?. BioAv Pathways: - induce or lower ROS production (not consistant increase for cancer cells) - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, - inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, VEGF↓, NF-κB↓, CXCR4↓, ERK↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, TOP1↓, - inhibits angiogenesis↓ : VEGF↓, Notch↓, PDGF↓, - Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Hepatoprotective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Tumor cell invasion is a critical process in cancer progression and metastasis, where cancer cells spread from the primary tumor to surrounding tissues and distant organs. This process involves several key steps and mechanisms: 1.Epithelial-Mesenchymal Transition (EMT): Many tumors originate from epithelial cells, which are typically organized in layers. During EMT, these cells lose their epithelial characteristics (such as cell-cell adhesion) and gain mesenchymal traits (such as increased motility). This transition is crucial for invasion. 2.Degradation of Extracellular Matrix (ECM): Tumor cells secrete enzymes, such as matrix metalloproteinases (MMPs), that degrade the ECM, allowing cancer cells to invade surrounding tissues. This degradation facilitates the movement of cancer cells through the tissue. 3.Cell Migration: Once the ECM is degraded, cancer cells can migrate. They often use various mechanisms, including amoeboid movement and mesenchymal migration, to move through the tissue. This migration is influenced by various signaling pathways and the tumor microenvironment. 4.Angiogenesis: As tumors grow, they require a blood supply to provide nutrients and oxygen. Tumor cells can stimulate the formation of new blood vessels (angiogenesis) through the release of growth factors like vascular endothelial growth factor (VEGF). This not only supports tumor growth but also provides a route for cancer cells to enter the bloodstream. 5.Invasion into Blood Vessels (Intravasation): Cancer cells can invade nearby blood vessels, allowing them to enter the circulatory system. This step is crucial for metastasis, as it enables cancer cells to travel to distant sites in the body. 6.Survival in Circulation: Once in the bloodstream, cancer cells must survive the immune response and the shear stress of blood flow. They can form clusters with platelets or other cells to evade detection. 7.Extravasation and Colonization: After traveling through the bloodstream, cancer cells can exit the circulation (extravasation) and invade new tissues. They may then establish secondary tumors (metastases) in distant organs. 8.Tumor Microenvironment: The surrounding microenvironment plays a significant role in tumor invasion. Factors such as immune cells, fibroblasts, and signaling molecules can either promote or inhibit invasion and metastasis. |
2767- | Bos,  |   | The potential role of boswellic acids in cancer prevention and treatment |
- | Review, | Var, | NA |
1423- | Bos,  |   | Acetyl-11-keto-β-Boswellic Acid Suppresses Invasion of Pancreatic Cancer Cells Through The Downregulation of CXCR4 Chemokine Receptor Expression |
- | in-vitro, | Melanoma, | U266 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | SkBr3 | - | in-vitro, | PC, | PANC1 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:47 Target#:324 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid