condition found tbRes List
Bos, Boswellia (frankincense): Click to Expand ⟱
Features:
Boswellia is an herbal extract from the Boswellia serrata tree that may help reduce inflammation.
May help with rheumatoid arthritis, inflammatory bowel disease, asthma, and cancer.
-Naturally occurring pentacyclic triterpenoids include ursolic acid (UA), oleanolic acid (OA), betulinic acid (BetA), bosewellic acid (BA), Asiatic acid (AA), α-amyrin, celastrol, glycyrrhizin, 18-β-glycyrrhetinic acid, lupeol, escin, madecassic acid, momordin I, platycodon D, pristimerin, saikosaponins, soyasapogenol B, and avicin
Boswellia refers to a group of resinous extracts obtained from Boswellia trees (e.g., Boswellia serrata). Traditionally used in Ayurvedic and traditional Chinese medicine, Boswellia is reputed for its anti-inflammatory, analgesic, and immunomodulatory properties. Its bioactive components—such as boswellic acids.
-Anti-inflammatory Activity (blocking the enzyme 5-lipoxygenase) 5LOX↓,.
-AKBA used to reduce Methionine ***** (help in Methionine reduced diet)
Boswellia extracts are often administered in doses ranging from 300 mg to 1,200 mg per day

AKBA (Acetyl-11-keto-β-boswellic acid) is a bioactive compound derived from Boswellia serrata, a plant used traditionally for its anti-inflammatory properties. (upto 30% AKBA in Boswellia MEGA AKBA)
AKBA also available in Inflasanum @ 90% AKDA (MCSformulas)

-Note half-life reports vary 2.5-90hrs?.
BioAv
Pathways:
- induce or lower ROS production (not consistant increase for cancer cells)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, VEGF↓, NF-κB↓, CXCR4↓, ERK↓
- cause Cell cycle arrest : TumCCA, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, TOP1↓,
- inhibits angiogenesis↓ : VEGF↓, Notch↓, PDGF↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Hepatoprotective,

- Selectivity: Cancer Cells vs Normal Cells


TumCCA, Tumor cell cycle arrest: Click to Expand ⟱
Source:
Type:
Tumor cell cycle arrest refers to the process by which cancer cells stop progressing through the cell cycle, which is the series of phases that a cell goes through to divide and replicate. This arrest can occur at various checkpoints in the cell cycle, including the G1, S, G2, and M phases. S, G1, G2, and M are the four phases of mitosis.


Scientific Papers found: Click to Expand⟱
2773- Bos,    Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: Potential role in prevention and therapy of cancer
- Review, Var, NA
Inflam↓, BA has been shown to be effective against chronic inflammation-driven diseases such as adjuvant or bovine serum albumin-induced arthritis, osteoarthritis, Crohn’s disease, ulcerative colitis, and ileitis, and galactosamine/endotoxin-induced hepa
TumCCA↑, BA induced apoptosis was mediated by cell cycle arrest in the G1 phase and by activating caspases 3, 8 and 9 in HT-29 cells
Casp3↑,
Casp8↑,
Casp9↑,
STAT3↑, BA inhibited the growth of multiple myeloma cells by suppression of STAT3 pathway and by activation of protein tyrosine phosphatase SHP1
SHP1↓,
NF-kB↓, BA down regulated the expression of NF-kB, cyclin D1, COX2, Ki-67, CD-31 and IAPs in the tumor tissue.
cycD1↓,
COX2↓,
Ki-67↓,
CD31↓,
IAP1↓,
MMPs↓, AKBA induced cell cycle arrest was mediated by down-regulating the expression of cyclinD1, suppresses MMP activity, and also induced apoptosis by suppressing Bcl-2, and Bcl-xL expression
Bcl-2↓,
Bcl-xL↓,

2024- Bos,    Antiproliferative and cell cycle arrest potentials of 3-O-acetyl-11-keto-β-boswellic acid against MCF-7 cells in vitro
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
MMP↓, mitochondrial membrane potential (ΔΨm) was reduced by increasing AKBA concentration with a significant release of cytochrome c.
Cyt‑c↑,
ROS↑, A significant increase in reactive oxygen species formation was observed. Compared with the untreated control, 1.32-, 1.61- and 2.44-fold ROS generation increases were achieved following 50, 100 and 200 µg mL−1 AKBA
Casp8↑, activated the production of caspase 8 and caspase 9 in a dose-dependent pattern
Casp9↑,
AntiTum↑, antitumoral activity against MCF-7 cells in a dose-dependent pattern with a reduction rate of 21.65 ± 6.63, 32.37 ± 6.97, 54.29 ± 5.35 and 61.42 ± 4.14% for the concentrations 50, 100, 200 and 400 µg mL−1, respectively
selectivity↑, cell inhibition rate with calculated IC50 of 101.1 and 275.2 for MCF-7 and MCF-10A, respectively
TumCCA↑, finally arrested the MCF-7 cell cycle at the G1 phase.

1450- Bos,  Cisplatin,    3-Acetyl-11-keto-β-boswellic acid (AKBA) induced antiproliferative effect by suppressing Notch signaling pathway and synergistic interaction with cisplatin against prostate cancer cells
- in-vitro, Pca, DU145
ROS↑, increased reactive oxygen species (ROS) generation
MMP↓,
Casp↑,
Apoptosis↑,
Bax:Bcl2↑,
TumCCA?, induce G0/G1 arrest
cycD1↓,
CDK4↓,
P21↑,
p27↑,
NOTCH↓, AKBA demonstrated significant downregulation of Notch signaling mediators
ChemoSen↑, AKBA has the potential to synergistically enhance the cytotoxic efficacy of cisplatin

1427- Bos,    Acetyl-keto-β-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells
- in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116 - in-vitro, CRC, LS174T
TumCG↓,
TumCCA↑, G1 phase
cycD1↓,
cycE↓,
CDK2↓,
CDK4↓,
p‑RB1↓,
P21↑,

1426- Bos,  CUR,  Chemo,    Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer
- in-vivo, CRC, NA - in-vitro, CRC, HCT116 - in-vitro, CRC, RKO - in-vitro, CRC, SW480 - in-vitro, RCC, SW-620 - in-vitro, RCC, HT-29 - in-vitro, CRC, Caco-2
miR-34a↑, curcumin and AKBA induced upregulation of tumor-suppressive miR-34a and downregulation of miR-27a in CRC cells
miR-27a-3p↓,
TumCG↓,
BAX↑,
Bcl-2↓,
PARP1↓,
TumCCA↑,
Apoptosis↑,
cMyc↓,
CDK4↓,
CDK6↓,
cycD1↓,
ChemoSen↑, combined treatment further increased the inhibitory effects
miR-34a↑, miR-34a expression was upregulated by curcumin and further elevated by concurrent treatment with curcumin and AKBA in HCT116 cell
miR-27a-3p↓,

1416- Bos,    Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent
- Review, NA, NA
5LO↓,
TumCCA↑, G0/G1 phase
LC3B↓, reduced the expression of LC3A/B-I and LC3A/B-II,
PI3K↓,
Akt↓,
Glycolysis↓,
AMPK↑,
mTOR↓,
Let-7↑,
COX2↓, methanolic extract decreased the expression of cyclooxygenase-2 gene
VEGF↓,
CXCR4↓,
MMP2↓,
MMP9↓,
HIF-1↓,
angioG↓,
TumCP↓,
TumCMig↓,
NF-kB↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
5LO↓,1,   Akt↓,1,   AMPK↑,1,   angioG↓,1,   AntiTum↑,1,   Apoptosis↑,2,   BAX↑,1,   Bax:Bcl2↑,1,   Bcl-2↓,2,   Bcl-xL↓,1,   Casp↑,1,   Casp3↑,1,   Casp8↑,2,   Casp9↑,2,   CD31↓,1,   CDK2↓,1,   CDK4↓,3,   CDK6↓,1,   ChemoSen↑,2,   cMyc↓,1,   COX2↓,2,   CXCR4↓,1,   cycD1↓,4,   cycE↓,1,   Cyt‑c↑,1,   Glycolysis↓,1,   HIF-1↓,1,   IAP1↓,1,   Inflam↓,1,   Ki-67↓,1,   LC3B↓,1,   Let-7↑,1,   miR-27a-3p↓,2,   miR-34a↑,2,   MMP↓,2,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   mTOR↓,1,   NF-kB↓,2,   NOTCH↓,1,   P21↑,2,   p27↑,1,   PARP1↓,1,   PI3K↓,1,   p‑RB1↓,1,   ROS↑,2,   selectivity↑,1,   SHP1↓,1,   STAT3↑,1,   TumCCA?,1,   TumCCA↑,5,   TumCG↓,2,   TumCMig↓,1,   TumCP↓,1,   VEGF↓,1,  
Total Targets: 56

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: TumCCA, Tumor cell cycle arrest
6 Boswellia (frankincense)
1 Cisplatin
1 Curcumin
1 Chemotherapy
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:47  Target#:322  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page