Api, Apigenin (mainly Parsley): Click to Expand ⟱
Features:
Apigenin present in parsley, celery, chamomile, oranges and beverages such as tea, beer and wine.
"It exhibits cell growth arrest and apoptosis in different types of tumors such as breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach, by modulating several signaling pathways."
-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv (improves when mixed with oil/dietary fat or lipid based formulations)
-best oil might be MCT oils (medium-chain fatty acids)


Pathways:
- Often considered an antioxidant, in cancer cells it can paradoxically induce ROS production
(one report that goes against most others, by lowering ROS in cancer cells but still effective)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ (Conflicting evidence about Nrf2)
        - Combined with Metformin (reduces Nrf2) amplifies ROS production in cancer cells while sparing normal cells.
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓,
- Others: PI3K↓, AKT↓, JAK↓, 1, 2, 3, STAT↓, 1, 2, 3, 4, 5, 6, Wnt↓, β-catenin↓, AMPK↓,, α↓,, ERK↓, 5↓, JNK↓,
- Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes)
        -Ex: other flavonoids(chrysin, Luteolin, querectin) curcumin, metformin, sulforaphane, ASA
Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells

Apigenin exhibits biological effects (anticancer, anti-inflammatory, antioxidant, neuroprotective, etc.) typically at concentrations roughly in the range of 1–50 µM.

Parsley microgreens can contain up to 2-3 times more apigenin than mature parsley.
Apigenin is typically measured in the range of 1-10 μM for biological activity. Assuming a molecular weight of 270 g/mol for apigenin, we can estimate the following μM concentrations:
10uM*5L(blood)*270g/mol=13.5mg apigenin (assumes 100% bioavailability)
then an estimated 10-20 mg of apigenin per 100 g of fresh weight parlsey
2.2mg/g of apigenin fresh parsley
45mg/g of apigenin in dried parsley (wikipedia)
so 100g of parsley might acheive 10uM blood serum level (100% bioavailability)
BUT bioavailability is only 1-5%
(Supplements available in 75mg liposomal)( Apigenin Pro Liposomal, 200 mg from mcsformulas.com)

A study had 2g/kg bw (meaning 160g for 80kg person) delivered a maximum 0.13uM of plasma concentration @ 7.2hrs.
Assuming parsley is 90-95% water, then that would be ~16g of dried parsley
Conclusion: to reach 10uM would seem very difficult by oral ingestion of parsley.
Other quotes:
      “4g of dried parsley will be enough for 50kg adult”
      5mg/kg BW yields 16uM, so 80Kg person means 400mg (if dried parsley is 130mg/g, then would need 3g/d)
In many cancer cell lines, concentrations in the range of approximately 20–40 µM have been reported to shift apigenin’s activity from mild antioxidant effects (or negligible ROS changes) toward a clear pro-oxidant effect with measurable ROS increases.

Low doses: At lower concentrations, apigenin is more likely to exhibit its antioxidant properties, scavenging ROS and protecting cells from oxidative stress.
In normal cells with robust antioxidant systems, apigenin’s antioxidant effects might prevail, whereas cancer cells—often characterized by an already high level of basal ROS—can be pushed over the oxidative threshold by increased ROS production induced by apigenin.
In environments with lower free copper levels, this pro-oxidant activity is less pronounced, and apigenin may tilt the balance toward its antioxidant function.


MET, Metformin: Click to Expand ⟱
Features: oral antidiabetic agent,
Metformin is a pleiotropic drug: attributed to its action on AMPK
Metformin directly inhibits Complex I of the electron transport chain (ETC) in mitochondria. This inhibition decreases mitochondrial ATP production and forces cells to rely more on glycolysis for energy.
Cancer cells, especially those with high energy demands, may be particularly sensitive to a drop in ATP levels. The inhibition of Complex I also increases the AMP/ATP ratio, setting the stage for the activation of downstream energy stress pathways.
AMPK activation results in the inhibition of the mammalian target of rapamycin (mTOR) pathway, a central regulator of protein synthesis and cellular growth. mTOR inhibition reduces cell proliferation and limits tissue growth, which can slow tumor progression.

Metformin reduces circulating insulin levels, which in turn can decrease the activation of the insulin and insulin-like growth factor-1 (IGF-1) receptor pathways.

ETC Inhibitors: Drugs that directly inhibit specific ETC complexes (e.g., Complex I inhibitors like metformin or phenformin) can increase electron leakage and ROS production.

-known as OXPHOS inhibitor



Scientific Papers found: Click to Expand⟱
1563- Api,  MET,    Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells
- in-vitro, Nor, HDFa - in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
selectivity↑, Metformin increased cellular ROS levels in AsPC-1 pancreatic cancer cells, with minimal effect in HDF, human primary dermal fibroblasts.
selectivity↑, Metformin reduced cellular ATP levels in HDF, but not in AsPC-1 cells
selectivity↓, Metformin increased AMPK, p-AMPK (Thr172), FOXO3a, p-FOXO3a (Ser413), and MnSOD levels in HDF, but not in AsPC-1 cells
ROS↑,
eff↑, Metformin combined with apigenin increased ROS levels dramatically and decreased cell viability in various cancer cells including AsPC-1 cells, with each drug used singly having a minimal effect.
tumCV↓,
MMP↓, Metformin/apigenin combination synergistically decreased mitochondrial membrane potential in AsPC-1 cells but to a lesser extent in HDF cells
Dose∅, co-treatment with metformin (0.05, 0.5 or 5 mM) and apigenin (20 µM) dramatically increased cellular ROS levels in AsPC-1 cells
eff↓, NAC blocked the metformin/apigenin co-treatment-induced cell death in AsPC-1 cells
DNAdam↑, Combination of metformin and apigenin leads to DNA damage-induced apoptosis, autophagy and necroptosis in AsPC-1 cells but not in HDF cells
Apoptosis↑,
TumAuto↑,
Necroptosis↑,
p‑P53↑, p-p53, Bim, Bid, Bax, cleaved PARP, caspase 3, caspase 8, and caspase 9 were also significantly increased by combination of metformin and apigenin in AsPC-1
BIM↑,
BAX↑,
p‑PARP↑,
Casp3↑,
Casp8↑,
Casp9↑,
Cyt‑c↑, Cytochrome C was also released from mitochondria in AsPC-1 cell
Bcl-2↓,
AIF↑, Interestingly, autophagy-related proteins (AIF, P62 and LC3B) and necroptosis-related proteins (MLKL, p-MLKL, RIP3 and p-RIP3) were also increased by combination of metformin and apigenin
p62↑,
LC3B↑,
MLKL↑,
p‑MLKL↓,
RIP3↑,
p‑RIP3↑,
TumCG↑, in vivo
TumW↓, metformin (125 mg/kg) or apigenin (40 mg/kg) caused a reduction of tumor size compared to the control group (Fig. 7D). However, oral administration of combination of metformin and apigenin decreased tumor weight profoundly


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:
AIF↑,1,   Apoptosis↑,1,   BAX↑,1,   Bcl-2↓,1,   BIM↑,1,   Casp3↑,1,   Casp8↑,1,   Casp9↑,1,   Cyt‑c↑,1,   DNAdam↑,1,   Dose∅,1,   eff↓,1,   eff↑,1,   LC3B↑,1,   MLKL↑,1,   p‑MLKL↓,1,   MMP↓,1,   Necroptosis↑,1,   p‑P53↑,1,   p62↑,1,   p‑PARP↑,1,   RIP3↑,1,   p‑RIP3↑,1,   ROS↑,1,   selectivity↓,1,   selectivity↑,2,   TumAuto↑,1,   TumCG↑,1,   tumCV↓,1,   TumW↓,1,  
Total Targets: 30

Results for Effect on Normal Cells:

Total Targets: 0

Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:32  Target#:%  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page