condition found
Features: |
Apigenin present in parsley, celery, chamomile, oranges and beverages such as tea, beer and wine. "It exhibits cell growth arrest and apoptosis in different types of tumors such as breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach, by modulating several signaling pathways." -Note half-life reports vary 2.5-90hrs?. -low solubility of apigenin in water : BioAv (improves when mixed with oil/dietary fat or lipid based formulations) -best oil might be MCT oils (medium-chain fatty acids) Pathways: - Often considered an antioxidant, in cancer cells it can paradoxically induce ROS production (one report that goes against most others, by lowering ROS in cancer cells but still effective) - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ (Conflicting evidence about Nrf2) - Combined with Metformin (reduces Nrf2) amplifies ROS production in cancer cells while sparing normal cells. - Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, - Others: PI3K↓, AKT↓, JAK↓, 1, 2, 3, STAT↓, 1, 2, 3, 4, 5, 6, Wnt↓, β-catenin↓, AMPK↓,, α↓,, ERK↓, 5↓, JNK↓, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes) -Ex: other flavonoids(chrysin, Luteolin, querectin) curcumin, metformin, sulforaphane, ASA Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells Apigenin exhibits biological effects (anticancer, anti-inflammatory, antioxidant, neuroprotective, etc.) typically at concentrations roughly in the range of 1–50 µM. Parsley microgreens can contain up to 2-3 times more apigenin than mature parsley. Apigenin is typically measured in the range of 1-10 μM for biological activity. Assuming a molecular weight of 270 g/mol for apigenin, we can estimate the following μM concentrations: 10uM*5L(blood)*270g/mol=13.5mg apigenin (assumes 100% bioavailability) then an estimated 10-20 mg of apigenin per 100 g of fresh weight parlsey 2.2mg/g of apigenin fresh parsley 45mg/g of apigenin in dried parsley (wikipedia) so 100g of parsley might acheive 10uM blood serum level (100% bioavailability) BUT bioavailability is only 1-5% (Supplements available in 75mg liposomal)( Apigenin Pro Liposomal, 200 mg from mcsformulas.com) A study had 2g/kg bw (meaning 160g for 80kg person) delivered a maximum 0.13uM of plasma concentration @ 7.2hrs. Assuming parsley is 90-95% water, then that would be ~16g of dried parsley Conclusion: to reach 10uM would seem very difficult by oral ingestion of parsley. Other quotes: “4g of dried parsley will be enough for 50kg adult” 5mg/kg BW yields 16uM, so 80Kg person means 400mg (if dried parsley is 130mg/g, then would need 3g/d) In many cancer cell lines, concentrations in the range of approximately 20–40 µM have been reported to shift apigenin’s activity from mild antioxidant effects (or negligible ROS changes) toward a clear pro-oxidant effect with measurable ROS increases. Low doses: At lower concentrations, apigenin is more likely to exhibit its antioxidant properties, scavenging ROS and protecting cells from oxidative stress. In normal cells with robust antioxidant systems, apigenin’s antioxidant effects might prevail, whereas cancer cells—often characterized by an already high level of basal ROS—can be pushed over the oxidative threshold by increased ROS production induced by apigenin. In environments with lower free copper levels, this pro-oxidant activity is less pronounced, and apigenin may tilt the balance toward its antioxidant function. |
Source: HalifaxProj (inhibit) |
Type: |
Reactive oxygen species (ROS) are highly reactive molecules that contain oxygen and can lead to oxidative stress in cells. They play a dual role in cancer biology, acting as both promoters and suppressors of cancer. ROS can cause oxidative damage to DNA, leading to mutations that may contribute to cancer initiation and progression. So normally you want to inhibit ROS to prevent cell mutations. However excessive ROS can induce apoptosis (programmed cell death) in cancer cells, potentially limiting tumor growth. Chemotherapy typically raises ROS. "Reactive oxygen species (ROS) are two electron reduction products of oxygen, including superoxide anion, hydrogen peroxide, hydroxyl radical, lipid peroxides, protein peroxides and peroxides formed in nucleic acids 1. They are maintained in a dynamic balance by a series of reduction-oxidation (redox) reactions in biological systems and act as signaling molecules to drive cellular regulatory pathways." "During different stages of cancer formation, abnormal ROS levels play paradoxical roles in cell growth and death 8. A physiological concentration of ROS that maintained in equilibrium is necessary for normal cell survival. Ectopic ROS accumulation promotes cell proliferation and consequently induces malignant transformation of normal cells by initiating pathological conversion of physiological signaling networks. Excessive ROS levels lead to cell death by damaging cellular components, including proteins, lipid bilayers, and chromosomes. Therefore, both scavenging abnormally elevated ROS to prevent early neoplasia and facilitating ROS production to specifically kill cancer cells are promising anticancer therapeutic strategies, in spite of their contradictoriness and complexity." "ROS are the collection of derivatives of molecular oxygen that occur in biology, which can be categorized into two types, free radicals and non-radical species. The non-radical species are hydrogen peroxide (H 2O 2 ), organic hydroperoxides (ROOH), singlet molecular oxygen ( 1 O 2 ), electronically excited carbonyl, ozone (O3 ), hypochlorous acid (HOCl, and hypobromous acid HOBr). Free radical species are super-oxide anion radical (O 2•−), hydroxyl radical (•OH), peroxyl radical (ROO•) and alkoxyl radical (RO•) [130]. Any imbalance of ROS can lead to adverse effects. H2 O 2 and O 2 •− are the main redox signalling agents. The cellular concentration of H2 O 2 is about 10−8 M, which is almost a thousand times more than that of O2 •−". "Radicals are molecules with an odd number of electrons in the outer shell [393,394]. A pair of radicals can be formed by breaking a chemical bond or electron transfer between two molecules." Recent investigations have documented that polyphenols with good antioxidant activity may exhibit pro-oxidant activity in the presence of copper ions, which can induce apoptosis in various cancer cell lines but not in normal cells. "We have shown that such cell growth inhibition by polyphenols in cancer cells is reversed by copper-specific sequestering agent neocuproine to a significant extent whereas iron and zinc chelators are relatively ineffective, thus confirming the role of endogenous copper in the cytotoxic action of polyphenols against cancer cells. Therefore, this mechanism of mobilization of endogenous copper." > Ions could be one of the important mechanisms for the cytotoxic action of plant polyphenols against cancer cells and is possibly a common mechanism for all plant polyphenols. In fact, similar results obtained with four different polyphenolic compounds in this study, namely apigenin, luteolin, EGCG, and resveratrol, strengthen this idea. Interestingly, the normal breast epithelial MCF10A cells have earlier been shown to possess no detectable copper as opposed to breast cancer cells [24], which may explain their resistance to polyphenols apigenin- and luteolin-induced growth inhibition as observed here (Fig. 1). We have earlier proposed [25] that this preferential cytotoxicity of plant polyphenols toward cancer cells is explained by the observation made several years earlier, which showed that copper levels in cancer cells are significantly elevated in various malignancies. Thus, because of higher intracellular copper levels in cancer cells, it may be predicted that the cytotoxic concentrations of polyphenols required would be lower in these cells as compared to normal cells." Majority of ROS are produced as a by-product of oxidative phosphorylation, high levels of ROS are detected in almost all cancers. -It is well established that during ER stress, cytosolic calcium released from the ER is taken up by the mitochondrion to stimulate ROS overgeneration and the release of cytochrome c, both of which lead to apoptosis. Note: Products that may raise ROS can be found using this database, by: Filtering on the target of ROS, and selecting the Effect Direction of ↑ Targets to raise ROS (to kill cancer cells): • NADPH oxidases (NOX): NOX enzymes are involved in the production of ROS. -Targeting NOX enzymes can increase ROS levels and induce cancer cell death. -eNOX2 inhibition leads to a high NADH/NAD⁺ ratio which can lead to increased ROS • Mitochondrial complex I: Inhibiting can increase ROS production • P53: Activating p53 can increase ROS levels(by inducing the expression of pro-oxidant genes) • Nrf2: regulates the expression of antioxidant genes. Inhibiting Nrf2 can increase ROS levels • Glutathione (GSH): an antioxidant. Depleting GSH can increase ROS levels • Catalase: Catalase converts H2O2 into H2O+O. Inhibiting catalase can increase ROS levels • SOD1: converts superoxide into hydrogen peroxide. Inhibiting SOD1 can increase ROS levels • PI3K/AKT pathway: regulates cell survival and metabolism. Inhibiting can increase ROS levels • HIF-1α: regulates genes involved in metabolism and angiogenesis. Inhibiting HIF-1α can increase ROS • Glycolysis: Inhibiting glycolysis can increase ROS levels • Fatty acid oxidation: Cancer cells often rely on fatty acid oxidation for energy production. -Inhibiting fatty acid oxidation can increase ROS levels • ER stress: Endoplasmic reticulum (ER) stress can increase ROS levels • Autophagy: process by which cells recycle damaged organelles and proteins. -Inhibiting autophagy can increase ROS levels and induce cancer cell death. • KEAP1/Nrf2 pathway: regulates the expression of antioxidant genes. -Inhibiting KEAP1 or activating Nrf2 can increase ROS levels and induce cancer cell death. • DJ-1: regulates the expression of antioxidant genes. Inhibiting DJ-1 can increase ROS levels • PARK2: regulates the expression of antioxidant genes. Inhibiting PARK2 can increase ROS levels • SIRT1:regulates the expression of antioxidant genes. Inhibiting SIRT1 can increase ROS levels • AMPK: regulates energy metabolism and can increase ROS levels when activated. • mTOR: regulates cell growth and metabolism. Inhibiting mTOR can increase ROS levels • HSP90: regulates protein folding and can increase ROS levels when inhibited. • Proteasome: degrades damaged proteins. Inhibiting the proteasome can increase ROS levels • Lipid peroxidation: a process by which lipids are oxidized, leading to the production of ROS. -Increasing lipid peroxidation can increase ROS levels • Ferroptosis: form of cell death that is regulated by iron and lipid peroxidation. -Increasing ferroptosis can increase ROS levels • Mitochondrial permeability transition pore (mPTP): regulates mitochondrial permeability. -Opening the mPTP can increase ROS levels • BCL-2 family proteins: regulate apoptosis and can increase ROS levels when inhibited. • Caspase-independent cell death: a form of cell death that is regulated by ROS. -Increasing caspase-independent cell death can increase ROS levels • DNA damage response: regulates the repair of DNA damage. Increasing DNA damage can increase ROS • Epigenetic regulation: process by which gene expression is regulated. -Increasing epigenetic regulation can increase ROS levels -PKM2, but not PKM1, can be inhibited by direct oxidation of cysteine 358 as an adaptive response to increased intracellular reactive oxygen species (ROS) ProOxidant Strategy:(inhibit the Melavonate Pathway (likely will also inhibit GPx) -HydroxyCitrate (HCA) found as supplement online and typically used in a dose of about 1.5g/day or more -Atorvastatin typically 40-80mg/day -Dipyridamole typically 200mg 2x/day -Lycopene typically 100mg/day range Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy |
1563- | Api,  | MET,  |   | Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells |
- | in-vitro, | Nor, | HDFa | - | in-vitro, | PC, | AsPC-1 | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | LNCaP | - | in-vivo, | NA, | NA |
1547- | Api,  |   | Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading |
- | Review, | NA, | NA |
1537- | Api,  |   | Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer |
- | Review, | PC, | NA |
1536- | Api,  |   | Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells |
- | in-vitro, | MM, | MSTO-211H | - | in-vitro, | MM, | H2452 |
2593- | Api,  |   | Apigenin promotes apoptosis of 4T1 cells through PI3K/AKT/Nrf2 pathway and improves tumor immune microenvironment in vivo |
- | in-vivo, | BC, | 4T1 |
2640- | Api,  |   | Apigenin: A Promising Molecule for Cancer Prevention |
- | Review, | Var, | NA |
2639- | Api,  |   | Plant flavone apigenin: An emerging anticancer agent |
- | Review, | Var, | NA |
2638- | Api,  |   | Apigenin, by activating p53 and inhibiting STAT3, modulates the balance between pro-apoptotic and pro-survival pathways to induce PEL cell death |
- | in-vitro, | lymphoma, | PEL |
2637- | Api,  |   | Apigenin Alleviates Endoplasmic Reticulum Stress-Mediated Apoptosis in INS-1 β-Cells |
- | in-vitro, | Diabetic, | NA |
2634- | Api,  |   | Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells |
- | in-vitro, | CRC, | HCT116 |
2633- | Api,  |   | Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cells |
- | in-vitro, | EC, | NA |
2632- | Api,  |   | Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress |
- | in-vitro, | EC, | NA |
2631- | Api,  |   | Apigenin Induces Autophagy and Cell Death by Targeting EZH2 under Hypoxia Conditions in Gastric Cancer Cells |
- | in-vivo, | GC, | NA | - | in-vitro, | GC, | AGS |
2583- | Api,  | Rad,  |   | The influence of apigenin on cellular responses to radiation: From protection to sensitization |
- | Review, | Var, | NA |
2318- | Api,  |   | Apigenin as a multifaceted antifibrotic agent: Therapeutic potential across organ systems |
- | Review, | Nor, | NA |
2317- | Api,  |   | Apigenin intervenes in liver fibrosis by regulating PKM2-HIF-1α mediated oxidative stress |
- | in-vivo, | Nor, | NA |
1999- | Api,  | doxoR,  |   | Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation |
- | in-vitro, | Nor, | NRK52E | - | in-vitro, | Nor, | MPC5 | - | in-vitro, | BC, | 4T1 | - | in-vivo, | NA, | NA |
1565- | Api,  |   | Apigenin-7-glucoside induces apoptosis and ROS accumulation in lung cancer cells, and inhibits PI3K/Akt/mTOR pathway |
- | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | BEAS-2B | - | in-vitro, | Lung, | H1975 |
1564- | Api,  |   | Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation |
- | in-vitro, | Pca, | 22Rv1 | - | in-vivo, | NA, | NA |
171- | Api,  |   | Apigenin in cancer therapy: anti-cancer effects and mechanisms of action |
- | Review, | Var, | NA |
586- | Api,  | 5-FU,  |   | 5-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (ΔΨm)-mediated apoptosis in hepatocellular carcinoma |
- | in-vivo, | HCC, | NA |
416- | Api,  |   | In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant Mesothelioma |
- | vitro+vivo, | NA, | NA |
313- | Api,  |   | Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells |
- | in-vitro, | Thyroid, | BCPAP |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:32 Target#:275 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid