condition found tbRes List
Api, Apigenin (mainly Parsley): Click to Expand ⟱
Features:
Apigenin present in parsley, celery, chamomile, oranges and beverages such as tea, beer and wine.
"It exhibits cell growth arrest and apoptosis in different types of tumors such as breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach, by modulating several signaling pathways."
-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv (improves when mixed with oil/dietary fat or lipid based formulations)
-best oil might be MCT oils (medium-chain fatty acids)


Pathways:
- Often considered an antioxidant, in cancer cells it can paradoxically induce ROS production
(one report that goes against most others, by lowering ROS in cancer cells but still effective)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ (Conflicting evidence about Nrf2)
        - Combined with Metformin (reduces Nrf2) amplifies ROS production in cancer cells while sparing normal cells.
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓,
- Others: PI3K↓, AKT↓, JAK↓, 1, 2, 3, STAT↓, 1, 2, 3, 4, 5, 6, Wnt↓, β-catenin↓, AMPK↓,, α↓,, ERK↓, 5↓, JNK↓,
- Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes)
        -Ex: other flavonoids(chrysin, Luteolin, querectin) curcumin, metformin, sulforaphane, ASA
Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells

Apigenin exhibits biological effects (anticancer, anti-inflammatory, antioxidant, neuroprotective, etc.) typically at concentrations roughly in the range of 1–50 µM.

Parsley microgreens can contain up to 2-3 times more apigenin than mature parsley.
Apigenin is typically measured in the range of 1-10 μM for biological activity. Assuming a molecular weight of 270 g/mol for apigenin, we can estimate the following μM concentrations:
10uM*5L(blood)*270g/mol=13.5mg apigenin (assumes 100% bioavailability)
then an estimated 10-20 mg of apigenin per 100 g of fresh weight parlsey
2.2mg/g of apigenin fresh parsley
45mg/g of apigenin in dried parsley (wikipedia)
so 100g of parsley might acheive 10uM blood serum level (100% bioavailability)
BUT bioavailability is only 1-5%
(Supplements available in 75mg liposomal)( Apigenin Pro Liposomal, 200 mg from mcsformulas.com)

A study had 2g/kg bw (meaning 160g for 80kg person) delivered a maximum 0.13uM of plasma concentration @ 7.2hrs.
Assuming parsley is 90-95% water, then that would be ~16g of dried parsley
Conclusion: to reach 10uM would seem very difficult by oral ingestion of parsley.
Other quotes:
      “4g of dried parsley will be enough for 50kg adult”
      5mg/kg BW yields 16uM, so 80Kg person means 400mg (if dried parsley is 130mg/g, then would need 3g/d)
In many cancer cell lines, concentrations in the range of approximately 20–40 µM have been reported to shift apigenin’s activity from mild antioxidant effects (or negligible ROS changes) toward a clear pro-oxidant effect with measurable ROS increases.

Low doses: At lower concentrations, apigenin is more likely to exhibit its antioxidant properties, scavenging ROS and protecting cells from oxidative stress.
In normal cells with robust antioxidant systems, apigenin’s antioxidant effects might prevail, whereas cancer cells—often characterized by an already high level of basal ROS—can be pushed over the oxidative threshold by increased ROS production induced by apigenin.
In environments with lower free copper levels, this pro-oxidant activity is less pronounced, and apigenin may tilt the balance toward its antioxidant function.


selectivity, selectivity: Click to Expand ⟱
Source:
Type:
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues.

Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance

Factors that affect selectivity:
1. Ability of Cancer cells to preferentially absorb a product/drug
-EPR-enhanced permeability and retention of cancer cells
-nanoparticle formations/carriers may target cancer cells over normal cells
-Liposomal formations. Also negatively/positively charged affects absorbtion

2. Product/drug effect may be different for normal vs cancer cells
- hypoxia
- transition metal content levels (iron/copper) change probability of fenton reaction.
- pH levels
- antiOxidant levels and defense levels

3. Bio-availability


Scientific Papers found: Click to Expand⟱
1548- Api,    A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms
- Review, Colon, NA
*BioAv↓, Apigenin is not easily absorbed orally because of its low water solubility, which is only 2.16 g/mL
*Half-Life∅, Apigenin is slowly absorbed and eliminated from the body, as evidenced by its half‐life of 91.8 h in the blood
selectivity↑, selective anticancer effects and effective cell cytotoxic activity while exhibiting negligible toxicity to ordinary cells
*toxicity↓, intentional consumption in higher doses, as the toxicity hazard is low
Wnt/(β-catenin)↓, inhibiting the Wnt/β‐catenin
P53↑,
P21↑,
PI3K↓,
Akt↓,
mTOR↓,
TumCCA↑, G2/M
TumCI↓,
TumCMig↓,
STAT3↓, apigenin can activate p53, which improves catalase and inhibits STAT3,
PKM2↓,
EMT↓, reversing increases in epithelial–mesenchymal transition (EMT)
cl‑PARP↑, apigenin increases the cleavage of poly‐(ADP‐ribose) polymerase (PARP) and rapidly enhances caspase‐3 activity,
Casp3↑,
Bax:Bcl2↑,
VEGF↓, apigenin suppresses VEGF transcription
Hif1a↓, decrease in hypoxia‐inducible factor 1‐alpha (HIF‐1α
Dose∅, effectiveness of apigenin (200 and 300 mg/kg) in treating CC was evaluated by establishing xenografts on Balb/c nude mice.
GLUT1↓, Apigenin has been found to inhibit GLUT1 activity and glucose uptake in human pancreatic cancer cells
GlucoseCon↓,

1559- Api,    Dually Active Apigenin-Loaded Nanostructured Lipid Carriers for Cancer Treatment
- in-vitro, Lung, A549 - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Dose↓, IC50 change from 33ug/mL(APG) to 2.4ug/mL(APG-NLC)
selectivity↑, higher selectivity from cancer to normal cell: see Table 4

1563- Api,  MET,    Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells
- in-vitro, Nor, HDFa - in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
selectivity↑, Metformin increased cellular ROS levels in AsPC-1 pancreatic cancer cells, with minimal effect in HDF, human primary dermal fibroblasts.
selectivity↑, Metformin reduced cellular ATP levels in HDF, but not in AsPC-1 cells
selectivity↓, Metformin increased AMPK, p-AMPK (Thr172), FOXO3a, p-FOXO3a (Ser413), and MnSOD levels in HDF, but not in AsPC-1 cells
ROS↑,
eff↑, Metformin combined with apigenin increased ROS levels dramatically and decreased cell viability in various cancer cells including AsPC-1 cells, with each drug used singly having a minimal effect.
tumCV↓,
MMP↓, Metformin/apigenin combination synergistically decreased mitochondrial membrane potential in AsPC-1 cells but to a lesser extent in HDF cells
Dose∅, co-treatment with metformin (0.05, 0.5 or 5 mM) and apigenin (20 µM) dramatically increased cellular ROS levels in AsPC-1 cells
eff↓, NAC blocked the metformin/apigenin co-treatment-induced cell death in AsPC-1 cells
DNAdam↑, Combination of metformin and apigenin leads to DNA damage-induced apoptosis, autophagy and necroptosis in AsPC-1 cells but not in HDF cells
Apoptosis↑,
TumAuto↑,
Necroptosis↑,
p‑P53↑, p-p53, Bim, Bid, Bax, cleaved PARP, caspase 3, caspase 8, and caspase 9 were also significantly increased by combination of metformin and apigenin in AsPC-1
BIM↑,
BAX↑,
p‑PARP↑,
Casp3↑,
Casp8↑,
Casp9↑,
Cyt‑c↑, Cytochrome C was also released from mitochondria in AsPC-1 cell
Bcl-2↓,
AIF↑, Interestingly, autophagy-related proteins (AIF, P62 and LC3B) and necroptosis-related proteins (MLKL, p-MLKL, RIP3 and p-RIP3) were also increased by combination of metformin and apigenin
p62↑,
LC3B↑,
MLKL↑,
p‑MLKL↓,
RIP3↑,
p‑RIP3↑,
TumCG↑, in vivo
TumW↓, metformin (125 mg/kg) or apigenin (40 mg/kg) caused a reduction of tumor size compared to the control group (Fig. 7D). However, oral administration of combination of metformin and apigenin decreased tumor weight profoundly

2584- Api,  Chemo,    The versatility of apigenin: Especially as a chemopreventive agent for cancer
- Review, Var, NA
ChemoSen↑, Apigenin has also been studied for its potential as a sensitizer in cancer therapy, improving the efficacy of traditional chemotherapeutic drugs and radiotherapy
RadioS↑, Apigenin enhances radiotherapy effects by sensitizing cancer cells to radiation-induced cell death
eff↝, It works by suppressing the expression of involucrin (hINV), a hallmark of keratinocyte development. Apigenin inhibits the rise in hINV expression caused by differentiating agents
DR5↑, Apigenin also greatly upregulates the expression of death receptor 5 (DR5
selectivity↑, Surprisingly, apigenin-mediated increase of DR5 expression is missing in normal mononuclear cells from human peripheral blood and doesn't subject these cells to TRAIL-induced death.
angioG↓, Apigenin has been found to prevent angiogenesis by targeting critical signaling pathways involved in blood vessel creation.
selectivity↑, Importantly, apigenin has been demonstrated to selectively kill cancer cells while sparing normal ones
chemoP↑, This selective cytotoxicity is beneficial in cancer therapy because it reduces the negative effects frequently associated with traditional treatments like chemotherapy
MAPK↓, Apigenin's ability to suppress MAPK signaling adds to its anticancer properties.
PI3K↓, Apigenin suppresses the PI3K/Akt/mTOR pathway, which is typically dysregulated in cancer.
Akt↓,
mTOR↓,
Wnt↓, Apigenin inhibits Wnt signaling by increasing β-catenin degradation
β-catenin/ZEB1↓,
GLUT1↓, fig 3
radioP↑, while reducing radiation-induced damage to healthy tissues
BioAv↓, obstacles associated with apigenin's low bioavailability and stability

2316- Api,    The interaction between apigenin and PKM2 restrains progression of colorectal cancer
- in-vitro, CRC, LS174T - in-vitro, CRC, HCT8 - in-vivo, CRC, NA
TumCP↓, the results proved that the anti-CRC activity of apigenin was positively correlated with pyruvate kinase M2 (PKM2) expression, characterized by the inhibition of cell proliferation and increase of apoptotic effects induced by apigenin in LS-174T cell
PKM2↓, findings reveal that apigenin is worthy of consideration as a promising PKM2 inhibitor for the prevention of CRC
Glycolysis↓, Apigenin restricted the glycolysis of LS-174T and HCT-8 cells by targeting the K433 site of PKM2, thereby playing an anti-CRC role in vivo and in vitro
TumCG↑, apigenin markedly attenuated tumor growth without any adverse effects.
selectivity↑,

1999- Api,  doxoR,    Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation
- in-vitro, Nor, NRK52E - in-vitro, Nor, MPC5 - in-vitro, BC, 4T1 - in-vivo, NA, NA
neuroP↑, APG has a protective role against DOX-induced nephrotoxicity
ChemoSen∅, without weakening DOX cytotoxicity in malignant tumors.
RenoP↑, potential protective agent against renal injury. attenuate renal toxicity in cancer patients treated with DOX.
selectivity↑, APG maintained the cytotoxicity of DOX to tumor cells but not to renal cells. APG alone exhibited a prominent cytotoxic effect on 4T1 cells (Fig. 9E), but not on normal renal cells, at the same concentration
chemoP↑, Furthermore, APG revealed a dose-dependent improvement in normal renal cells against DOX-induced injury (Fig. 9E), with an exacerbation observed in 4T1 cells
ROS↑, Our in vivo study revealed that DOX caused a severe reduction in SOD activity and GSH levels, accompanied by an increase in MDA, leading to the overproduction of ROS and induction of oxidative injuries.
*ROS∅, Noteworthily, these changes were suppressed by APG(meaning on normal cells), consistent with several previous reports
*antiOx↑, APG has a similar antioxidative role as NAC and scavenges DOX-induced oxygen radicals and inhibits apoptosis significantly, implying that antioxidative stress is one of the main mechanisms through which APG protects renal tubular cells against DOX cy
*toxicity↓, We confirmed that APG mitigated the toxicity of DOX on normal renal cells by inhibiting oxidative stress, inflammation, and apoptosis.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
AIF↑,1,   Akt↓,2,   angioG↓,1,   Apoptosis↑,1,   BAX↑,1,   Bax:Bcl2↑,1,   Bcl-2↓,1,   BIM↑,1,   BioAv↓,1,   Casp3↑,2,   Casp8↑,1,   Casp9↑,1,   chemoP↑,2,   ChemoSen↑,1,   ChemoSen∅,1,   Cyt‑c↑,1,   DNAdam↑,1,   Dose↓,1,   Dose∅,2,   DR5↑,1,   eff↓,1,   eff↑,1,   eff↝,1,   EMT↓,1,   GlucoseCon↓,1,   GLUT1↓,2,   Glycolysis↓,1,   Hif1a↓,1,   LC3B↑,1,   MAPK↓,1,   MLKL↑,1,   p‑MLKL↓,1,   MMP↓,1,   mTOR↓,2,   Necroptosis↑,1,   neuroP↑,1,   P21↑,1,   P53↑,1,   p‑P53↑,1,   p62↑,1,   p‑PARP↑,1,   cl‑PARP↑,1,   PI3K↓,2,   PKM2↓,2,   radioP↑,1,   RadioS↑,1,   RenoP↑,1,   RIP3↑,1,   p‑RIP3↑,1,   ROS↑,2,   selectivity↓,1,   selectivity↑,8,   STAT3↓,1,   TumAuto↑,1,   TumCCA↑,1,   TumCG↑,2,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,1,   tumCV↓,1,   TumW↓,1,   VEGF↓,1,   Wnt↓,1,   Wnt/(β-catenin)↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 65

Results for Effect on Normal Cells:
antiOx↑,1,   BioAv↓,1,   Half-Life∅,1,   ROS∅,1,   toxicity↓,2,  
Total Targets: 5

Scientific Paper Hit Count for: selectivity, selectivity
6 Apigenin (mainly Parsley)
1 Metformin
1 Chemotherapy
1 doxorubicin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:32  Target#:1110  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page