condition found tbRes List
Api, Apigenin (mainly Parsley): Click to Expand ⟱
Features:
Apigenin present in parsley, celery, chamomile, oranges and beverages such as tea, beer and wine.
"It exhibits cell growth arrest and apoptosis in different types of tumors such as breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach, by modulating several signaling pathways."
-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv (improves when mixed with oil/dietary fat or lipid based formulations)
-best oil might be MCT oils (medium-chain fatty acids)


Pathways:
- Often considered an antioxidant, in cancer cells it can paradoxically induce ROS production
(one report that goes against most others, by lowering ROS in cancer cells but still effective)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ (Conflicting evidence about Nrf2)
        - Combined with Metformin (reduces Nrf2) amplifies ROS production in cancer cells while sparing normal cells.
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓,
- Others: PI3K↓, AKT↓, JAK↓, 1, 2, 3, STAT↓, 1, 2, 3, 4, 5, 6, Wnt↓, β-catenin↓, AMPK↓,, α↓,, ERK↓, 5↓, JNK↓,
- Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes)
        -Ex: other flavonoids(chrysin, Luteolin, querectin) curcumin, metformin, sulforaphane, ASA
Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells

Apigenin exhibits biological effects (anticancer, anti-inflammatory, antioxidant, neuroprotective, etc.) typically at concentrations roughly in the range of 1–50 µM.

Parsley microgreens can contain up to 2-3 times more apigenin than mature parsley.
Apigenin is typically measured in the range of 1-10 μM for biological activity. Assuming a molecular weight of 270 g/mol for apigenin, we can estimate the following μM concentrations:
10uM*5L(blood)*270g/mol=13.5mg apigenin (assumes 100% bioavailability)
then an estimated 10-20 mg of apigenin per 100 g of fresh weight parlsey
2.2mg/g of apigenin fresh parsley
45mg/g of apigenin in dried parsley (wikipedia)
so 100g of parsley might acheive 10uM blood serum level (100% bioavailability)
BUT bioavailability is only 1-5%
(Supplements available in 75mg liposomal)( Apigenin Pro Liposomal, 200 mg from mcsformulas.com)

A study had 2g/kg bw (meaning 160g for 80kg person) delivered a maximum 0.13uM of plasma concentration @ 7.2hrs.
Assuming parsley is 90-95% water, then that would be ~16g of dried parsley
Conclusion: to reach 10uM would seem very difficult by oral ingestion of parsley.
Other quotes:
      “4g of dried parsley will be enough for 50kg adult”
      5mg/kg BW yields 16uM, so 80Kg person means 400mg (if dried parsley is 130mg/g, then would need 3g/d)
In many cancer cell lines, concentrations in the range of approximately 20–40 µM have been reported to shift apigenin’s activity from mild antioxidant effects (or negligible ROS changes) toward a clear pro-oxidant effect with measurable ROS increases.

Low doses: At lower concentrations, apigenin is more likely to exhibit its antioxidant properties, scavenging ROS and protecting cells from oxidative stress.
In normal cells with robust antioxidant systems, apigenin’s antioxidant effects might prevail, whereas cancer cells—often characterized by an already high level of basal ROS—can be pushed over the oxidative threshold by increased ROS production induced by apigenin.
In environments with lower free copper levels, this pro-oxidant activity is less pronounced, and apigenin may tilt the balance toward its antioxidant function.


HDAC, Histone deacetylases: Click to Expand ⟱
Source:
Type:
Enzymes involved in regulating gene expression by removing acetyl groups from histones, the proteins around which DNA is wrapped.
-Many cancers exhibit altered expression levels of HDACs, which can contribute to the dysregulation of genes involved in cell growth, survival, and differentiation.
-HDACs can repress the expression of tumor suppressor genes, leading to uncontrolled cell proliferation and survival. This repression can be a key factor in the development and progression of cancer.
-HDAC inhibitors (HDACi) have been developed and are being investigated for their ability to reactivate silenced genes, induce cell cycle arrest, and promote apoptosis in cancer cells.
-HDAC1, HDAC2): Often overexpressed in various cancers, including breast, prostate, and colorectal cancers. Their overexpression is associated with poor prognosis.
-HDAC4, HDAC5): These may have both oncogenic and tumor-suppressive roles depending on the context and cancer type.
-While HDACs are not classified as traditional oncogenes, their overexpression and activity can contribute to oncogenic processes.
-HDAC inhibitor works by preventing the removal of acetyl groups from histones, thereby modulating gene expression, influencing cell behavior, and potentially reversing aberrant gene silencing seen in various diseases.
-HDAC inhibitors can help reactivate these genes, thereby inhibiting growth and inducing apoptosis in cancer cells.


Scientific Papers found: Click to Expand⟱
1561- Api,    Apigenin Reactivates Nrf2 Anti-oxidative Stress Signaling in Mouse Skin Epidermal JB6 P + Cells Through Epigenetics Modifications
- in-vivo, Nor, JB6
*NRF2↑, API enhanced the nuclear translocation of Nrf2
*DNMT1↓, API reduced the expression of the DNMT1, DNMT3a, and DNMT3b epigenetic proteins as well as the expression of some HDACs (1–8).
*DNMT3A↓,
*HDAC↓,
*AntiCan↑, results may provide new therapeutic insights into the prevention of skin cancer by dietary phytochemicals.

1547- Api,    Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading
- Review, NA, NA
angioG↓,
EMT↓,
CSCs↓,
TumCCA↑,
Dose∅, Dried parsley 45,035ug/g: Dried chamomille flower 3000–5000ug/g: Parsley 2154.6ug/g:
ROS↑, activity of Apigenin has been linked to the induction of oxidative stress in cancer cells
MMP↓, triggering intracellular ROS accumulation and loss of mitochondrial integrity
Catalase↓, catalase and glutathione (GSH), molecules involved in alleviating oxidative stress, were downregulated after Apigenin
GSH↓,
PI3K↓, suppression of the PI3K/Akt and NF-κB
Akt↓,
NF-kB↓,
OCT4↓, glycosylated form of Apigenin (i.e., Vitexin) was able to suppress stemness features of human endometrial cancer, as documented by the downregulation of Oct4 and Nanog
Nanog↓,
SIRT3↓, inhibition of sirtuin-3 (SIRT3) and sirtuin-6 (SIRT6) protein levels
SIRT6↓,
eff↑, ability of Apigenin to interfere with CSC features is often enhanced by the co-administration of other flavonoids, such as chrysin
eff↑, Apigenin combined with a chemotherapy agent, temozolomide (TMZ), was used on glioblastoma cells and showed better performance in cell arrest at the G2 phase compared with Apigenin or TMZ alone,
Cyt‑c↑, release of cytochrome c (Cyt c)
Bax:Bcl2↑, Apigenin has been shown to induce the apoptosis death pathway by increasing the Bax/Bcl-2 ratio
p‑GSK‐3β↓, Apigenin has been shown to prevent activation of phosphorylation of glycogen synthase kinase-3 beta (GSK-3β)
FOXO3↑, Apigenin administration increased the expression of forkhead box O3 (FOXO3)
p‑STAT3↓, Apigenin can induce apoptosis via inhibition of STAT3 phosphorylation
MMP2↓, downregulation of the expression of MMP-2 and MMP-9
MMP9↓,
COX2↓, downregulation of PI3K/Akt in leukemia HL60 cells [156,157] and of COX2, iNOS, and reactive oxygen species (ROS) accumulation in breast cancer cells
MMPs↓, triggering intracellular ROS accumulation and loss of mitochondrial integrity, as proved by low MMP in Apigenin-treated cells
NRF2↓, suppressed the nuclear factor erythroid 2-related factor 2 (Nrf2)
HDAC↓, inhibition of histone deacetylases (HDACs) is the mechanism through which Apigenin induces apoptosis in prostate cancer cells
Telomerase↓, Apigenin has been shown to downregulate telomerase activity
eff↑, Indeed, co-administration with 5-fluorouracil (5-FU) increased the efficacy of Apigenin in human colon cancer through p53 upregulation and ROS accumulation
eff↑, Apigenin synergistically enhances the cytotoxic effects of Sorafenib
eff↑, pretreatment of pancreatic BxPC-3 cells for 24 h with a low concentration of Apigenin and gemcitabine caused the inhibition of the GSK-3β/NF-κB signaling pathway, leading to the induction of apoptosis
eff↑, In NSCLC cells, compared to monotherapy, co-treatment with Apigenin and naringenin increased the apoptotic rate through ROS accumulation, Bax/Bcl-2 increase, caspase-3 activation, and mitochondrial dysfunction
eff↑, Several studies have shown that Apigenin-induced autophagy may play a pro-survival role in cancer therapy; in fact, inhibition of autophagy has been shown to exacerbate the toxicity of Apigenin
XIAP↓,
survivin↓,
CK2↓,
HSP90↓,
Hif1a↓,
FAK↓,
EMT↓,

2664- Api,    Progress in discovery and development of natural inhibitors of histone deacetylases (HDACs) as anti-cancer agents
- Review, Var, NA
HDAC↓, Inhibition of HDAC by apigenin results in H3 and H4 acetylation and hyperacetylation of H3 on the p21/waf1 promoter region.

2639- Api,    Plant flavone apigenin: An emerging anticancer agent
- Review, Var, NA
*antiOx↑, Apigenin (4′, 5, 7-trihydroxyflavone), a major plant flavone, possessing antioxidant, anti-inflammatory, and anticancer properties
*Inflam↓,
AntiCan↑,
ChemoSen↑, Studies demonstrate that apigenin retain potent therapeutic properties alone and/or increases the efficacy of several chemotherapeutic drugs in combination on a variety of human cancers.
BioEnh↑, Apigenin’s anticancer effects could also be due to its differential effects in causing minimal toxicity to normal cells with delayed plasma clearance and slow decomposition in liver increasing the systemic bioavailability in pharmacokinetic studies.
chemoP↑, apigenin highlighting its potential activity as a chemopreventive and therapeutic agent.
IL6↓, In taxol-resistant ovarian cancer cells, apigenin caused down regulation of TAM family of tyrosine kinase receptors and also caused inhibition of IL-6/STAT3 axis, thereby attenuating proliferation.
STAT3↓,
NF-kB↓, apigenin treatment effectively inhibited NF-κB activation, scavenged free radicals, and stimulated MUC-2 secretion
IL8↓, interleukin (IL)-6, and IL-8
eff↝, The anti-proliferative effects of apigenin was significantly higher in breast cancer cells over-expressing HER2/neu but was much less efficacious in restricting the growth of cell lines expressing HER2/neu at basal levels
Akt↓, Apigenin interferes in the cell survival pathway by inhibiting Akt function by directly blocking PI3K activity
PI3K↓,
HER2/EBBR2↓, apigenin administration led to the depletion of HER2/neu protein in vivo
cycD1↓, Apigenin treatment in breast cancer cells also results in decreased expression of cyclin D1, D3, and cdk4 and increased quantities of p27 protein
CycD3↓,
p27↑,
FOXO3↑, In triple-negative breast cancer cells, apigenin induces apoptosis by inhibiting the PI3K/Akt pathway thereby increasing FOXO3a expression
STAT3↓, In addition, apigenin also down-regulated STAT3 target genes MMP-2, MMP-9, VEGF and Twist1, which are involved in cell migration and invasion of breast cancer cells [
MMP2↓,
MMP9↓,
VEGF↓, Apigenin acts on the HIF-1 binding site, which decreases HIF-1α, but not the HIF-1β subunit, thereby inhibiting VEGF.
Twist↓,
MMP↓, Apigenin treatment of HGC-27 and SGC-7901 gastric cancer cells resulted in the inhibition of proliferation followed by mitochondrial depolarization resulting in apoptosis
ROS↑, Further studies revealed apigenin-induced apoptosis in hepatoma tumor cells by utilizing ROS generated through the activation of the NADPH oxidase
NADPH↑,
NRF2↓, Apigenin significantly sensitized doxorubicin-resistant BEL-7402 (BEL-7402/ADM) cells to doxorubicin (ADM) and increased the intracellular concentration of ADM by reducing Nrf2-
SOD↓, In human cervical epithelial carcinoma HeLa cells combination of apigenin and paclitaxel significantly increased inhibition of cell proliferation, suppressing the activity of SOD, inducing ROS accumulation leading to apoptosis by activation of caspas
COX2↓, melanoma skin cancer model where apigenin inhibited COX-2 that promotes proliferation and tumorigenesis
p38↑, Additionally, it was shown that apigenin treatment in a late phase involves the activation of p38 and PKCδ to modulate Hsp27, thus leading to apoptosis
Telomerase↓, apigenin inhibits cell growth and diminishes telomerase activity in human-derived leukemia cells
HDAC↓, demonstrated the role of apigenin as a histone deacetylase inhibitor. As such, apigenin acts on HDAC1 and HDAC3
HDAC1↓,
HDAC3↓,
Hif1a↓, Apigenin acts on the HIF-1 binding site, which decreases HIF-1α, but not the HIF-1β subunit, thereby inhibiting VEGF.
angioG↓, Moreover, apigenin was found to inhibit angiogenesis, as suggested by decreased HIF-1α and VEGF expression in cancer cells
uPA↓, Furthermore, apigenin intake resulted in marked inhibition of p-Akt, p-ERK1/2, VEGF, uPA, MMP-2 and MMP-9, corresponding with tumor growth and metastasis inhibition in TRAMP mice
Ca+2↑, Neuroblastoma SH-SY5Y cells treated with apigenin led to induction of apoptosis, accompanied by higher levels of intracellular free [Ca(2+)] and shift in Bax:Bcl-2 ratio in favor of apoptosis, cytochrome c release, followed by activation casp-9, 12
Bax:Bcl2↑,
Cyt‑c↑,
Casp9↑,
Casp12↑,
Casp3↑, Apigenin also augmented caspase-3 activity and PARP cleavage
cl‑PARP↑,
E-cadherin↑, Apigenin treatment resulted in higher levels of E-cadherin and reduced levels of nuclear β-catenin, c-Myc, and cyclin D1 in the prostates of TRAMP mice.
β-catenin/ZEB1↓,
cMyc↓,
CDK4↓, apigenin exposure led to decreased levels of cell cycle regulatory proteins including cyclin D1, D2 and E and their regulatory partners CDK2, 4, and 6
CDK2↓,
CDK6↓,
IGF-1↓, A reduction in the IGF-1 and increase in IGFBP-3 levels in the serum and the dorsolateral prostate was observed in apigenin-treated mice.
CK2↓, benefits of apigenin as a CK2 inhibitor in the treatment of human cervical cancer by targeting cancer stem cells
CSCs↓,
FAK↓, Apigenin inhibited the tobacco-derived carcinogen-mediated cell proliferation and migration involving the β-AR and its downstream signals FAK and ERK activation
Gli↓, Apigenin inhibited the self-renewal capacity of SKOV3 sphere-forming cells (SFC) by downregulating Gli1 regulated by CK2α
GLUT1↓, Apigenin induces apoptosis and slows cell growth through metabolic and oxidative stress as a consequence of the down-regulation of glucose transporter 1 (GLUT1).

2631- Api,    Apigenin Induces Autophagy and Cell Death by Targeting EZH2 under Hypoxia Conditions in Gastric Cancer Cells
- in-vivo, GC, NA - in-vitro, GC, AGS
ER Stress↑, We further show that APG induces ER stress- and autophagy-related cell death through the inhibition of HIF-1α and Ezh2 under normoxia and hypoxia.
Hif1a↓, APG Inhibits HIF-1α and Induces Cell Death under Hypoxia in GC Cells
EZH2↓,
HDAC↓, Apigenin, a flavonoid found in traditional medicine, fruits, and vegetables and an HDAC inhibitor, is a powerful anti-cancer agent against various cancer cell lines.
TumAuto↑, APG Induces Autophagic Cell Death in GC Cells
p‑mTOR↓, APG decreased the phosphorylation of mTOR and increased the activation of AMPKα and ULK1
AMPKα↑,
GRP78/BiP↑, APG mediates the up-regulation of GRP78 through exosomes, and that this effect causes ER stress-induced cell death in APG-treated GC cells.
ROS↑, APG generates intracellular ROS release in colorectal cancer cells, and it causes various cell death types, including cell cycle arrest, chromatin condensation, MMP loss, intracellular Ca2+, annexin-v-positive cells, and ER stress-related cell death
MMP↓,
Ca+2↑, we found that APG exerts intracellular Ca2+ release in a dose- and time-dependent manner
ATF4↑, APG also increased ATF4 and CHOP in a time-dependent manner
CHOP↑,

1151- Api,    Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: In vitro and in vivo study
- in-vitro, Pca, PC3 - in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
TumCCA↑,
Apoptosis↑,
HDAC↓, HDAC1 and HDAC3
P21↑,
BAX↑,
TumCG↓,
Bcl-2↓,
Bax:Bcl2↑, shifting the bax/bcl2 ratio in favor of apoptosis
HDAC1↓,
HDAC3↓,

177- Api,    Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21WAF1/CIP1 expression
- in-vitro, BC, MDA-MB-231
Cyc↓, Cyclin A
CycB↓,
CDK1↓,
P21↑,
PCNA↝,
HDAC↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
Akt↓,2,   AMPKα↑,1,   angioG↓,2,   AntiCan↑,1,   Apoptosis↑,1,   ATF4↑,1,   BAX↑,1,   Bax:Bcl2↑,3,   Bcl-2↓,1,   BioEnh↑,1,   Ca+2↑,2,   Casp12↑,1,   Casp3↑,1,   Casp9↑,1,   Catalase↓,1,   CDK1↓,1,   CDK2↓,1,   CDK4↓,1,   CDK6↓,1,   chemoP↑,1,   ChemoSen↑,1,   CHOP↑,1,   CK2↓,2,   cMyc↓,1,   COX2↓,2,   CSCs↓,2,   Cyc↓,1,   CycB↓,1,   cycD1↓,1,   CycD3↓,1,   Cyt‑c↑,2,   Dose∅,1,   E-cadherin↑,1,   eff↑,7,   eff↝,1,   EMT↓,2,   ER Stress↑,1,   EZH2↓,1,   FAK↓,2,   FOXO3↑,2,   Gli↓,1,   GLUT1↓,1,   GRP78/BiP↑,1,   GSH↓,1,   p‑GSK‐3β↓,1,   HDAC↓,6,   HDAC1↓,2,   HDAC3↓,2,   HER2/EBBR2↓,1,   Hif1a↓,3,   HSP90↓,1,   IGF-1↓,1,   IL6↓,1,   IL8↓,1,   MMP↓,3,   MMP2↓,2,   MMP9↓,2,   MMPs↓,1,   p‑mTOR↓,1,   NADPH↑,1,   Nanog↓,1,   NF-kB↓,2,   NRF2↓,2,   OCT4↓,1,   P21↑,2,   p27↑,1,   p38↑,1,   cl‑PARP↑,1,   PCNA↝,1,   PI3K↓,2,   ROS↑,3,   SIRT3↓,1,   SIRT6↓,1,   SOD↓,1,   STAT3↓,2,   p‑STAT3↓,1,   survivin↓,1,   Telomerase↓,2,   TumAuto↑,1,   TumCCA↑,2,   TumCG↓,1,   Twist↓,1,   uPA↓,1,   VEGF↓,1,   XIAP↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 86

Results for Effect on Normal Cells:
AntiCan↑,1,   antiOx↑,1,   DNMT1↓,1,   DNMT3A↓,1,   HDAC↓,1,   Inflam↓,1,   NRF2↑,1,  
Total Targets: 7

Scientific Paper Hit Count for: HDAC, Histone deacetylases
7 Apigenin (mainly Parsley)
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:32  Target#:140  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page