Database Query Results : Apigenin (mainly Parsley), , neuroP

Api, Apigenin (mainly Parsley): Click to Expand ⟱
Features:
Apigenin present in parsley, celery, chamomile, oranges and beverages such as tea, beer and wine.
"It exhibits cell growth arrest and apoptosis in different types of tumors such as breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach, by modulating several signaling pathways."
-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv (improves when mixed with oil/dietary fat or lipid based formulations)
-best oil might be MCT oils (medium-chain fatty acids)


Pathways:
- Often considered an antioxidant, in cancer cells it can paradoxically induce ROS production
(one report that goes against most others, by lowering ROS in cancer cells but still effective)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ (Conflicting evidence about Nrf2)
        - Combined with Metformin (reduces Nrf2) amplifies ROS production in cancer cells while sparing normal cells.
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓,
- Others: PI3K↓, AKT↓, JAK↓, 1, 2, 3, STAT↓, 1, 2, 3, 4, 5, 6, Wnt↓, β-catenin↓, AMPK↓,, α↓,, ERK↓, 5↓, JNK↓,
- Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes)
        -Ex: other flavonoids(chrysin, Luteolin, querectin) curcumin, metformin, sulforaphane, ASA
Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells

Apigenin exhibits biological effects (anticancer, anti-inflammatory, antioxidant, neuroprotective, etc.) typically at concentrations roughly in the range of 1–50 µM.

Parsley microgreens can contain up to 2-3 times more apigenin than mature parsley.
Apigenin is typically measured in the range of 1-10 μM for biological activity. Assuming a molecular weight of 270 g/mol for apigenin, we can estimate the following μM concentrations:
10uM*5L(blood)*270g/mol=13.5mg apigenin (assumes 100% bioavailability)
then an estimated 10-20 mg of apigenin per 100 g of fresh weight parlsey
2.2mg/g of apigenin fresh parsley
45mg/g of apigenin in dried parsley (wikipedia)
so 100g of parsley might acheive 10uM blood serum level (100% bioavailability)
BUT bioavailability is only 1-5%
(Supplements available in 75mg liposomal)( Apigenin Pro Liposomal, 200 mg from mcsformulas.com)

A study had 2g/kg bw (meaning 160g for 80kg person) delivered a maximum 0.13uM of plasma concentration @ 7.2hrs.
Assuming parsley is 90-95% water, then that would be ~16g of dried parsley
Conclusion: to reach 10uM would seem very difficult by oral ingestion of parsley.
Other quotes:
      “4g of dried parsley will be enough for 50kg adult”
      5mg/kg BW yields 16uM, so 80Kg person means 400mg (if dried parsley is 130mg/g, then would need 3g/d)
In many cancer cell lines, concentrations in the range of approximately 20–40 µM have been reported to shift apigenin’s activity from mild antioxidant effects (or negligible ROS changes) toward a clear pro-oxidant effect with measurable ROS increases.

Low doses: At lower concentrations, apigenin is more likely to exhibit its antioxidant properties, scavenging ROS and protecting cells from oxidative stress.
In normal cells with robust antioxidant systems, apigenin’s antioxidant effects might prevail, whereas cancer cells—often characterized by an already high level of basal ROS—can be pushed over the oxidative threshold by increased ROS production induced by apigenin.
In environments with lower free copper levels, this pro-oxidant activity is less pronounced, and apigenin may tilt the balance toward its antioxidant function.


neuroP, neuroprotective: Click to Expand ⟱
Source:
Type:
Neuroprotective refers to the ability of a substance, intervention, or strategy to preserve the structure and function of nerve cells (neurons) against injury or degeneration.
-While cancer and neurodegenerative processes might seem distinct, there is significant overlap in terms of treatment-related neurotoxicity, shared molecular mechanisms, and the potential for therapies that provide neuroprotection during cancer treatment.


Scientific Papers found: Click to Expand⟱
1999- Api,  doxoR,    Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation
- in-vitro, Nor, NRK52E - in-vitro, Nor, MPC5 - in-vitro, BC, 4T1 - in-vivo, NA, NA
neuroP↑, APG has a protective role against DOX-induced nephrotoxicity
ChemoSen∅, without weakening DOX cytotoxicity in malignant tumors.
RenoP↑, potential protective agent against renal injury. attenuate renal toxicity in cancer patients treated with DOX.
selectivity↑, APG maintained the cytotoxicity of DOX to tumor cells but not to renal cells. APG alone exhibited a prominent cytotoxic effect on 4T1 cells (Fig. 9E), but not on normal renal cells, at the same concentration
chemoP↑, Furthermore, APG revealed a dose-dependent improvement in normal renal cells against DOX-induced injury (Fig. 9E), with an exacerbation observed in 4T1 cells
ROS↑, Our in vivo study revealed that DOX caused a severe reduction in SOD activity and GSH levels, accompanied by an increase in MDA, leading to the overproduction of ROS and induction of oxidative injuries.
*ROS∅, Noteworthily, these changes were suppressed by APG(meaning on normal cells), consistent with several previous reports
*antiOx↑, APG has a similar antioxidative role as NAC and scavenges DOX-induced oxygen radicals and inhibits apoptosis significantly, implying that antioxidative stress is one of the main mechanisms through which APG protects renal tubular cells against DOX cy
*toxicity↓, We confirmed that APG mitigated the toxicity of DOX on normal renal cells by inhibiting oxidative stress, inflammation, and apoptosis.

2636- Api,    Apigenin unveiled: an encyclopedic review of its preclinical and clinical insights
- Review, NA, NA
*AntiCan↑, clinical studies are beginning to affirm apigenin's therapeutic benefits, showing positive effects in treating cancer, cardiovascular diseases, diabetes, neurodegenerative disorders, and inflammatory conditions.
*cardioP↑, The findings suggest that apigenin could serve as an effective therapeutic agent to reduce cardiotoxicity caused by Doxorubicin
*neuroP↑,
*Inflam↓,
*antiOx↑, apigenin (5,7,4′-trihydroxyflavone) is a flavonoid that chelates redox-active metals and has antioxidant properties
*hepatoP↑, Overall, the results indicate that apigenin alleviated liver injury by reducing inflammation and oxidative stress via suppression of the non-canonical NF-κB pathway
ChemoSen↑, Apigenin increases the cytotoxicity of sorafenib

4280- Api,    Protective effects of apigenin in neurodegeneration: An update on the potential mechanisms
- Review, AD, NA - Review, Park, NA
*neuroP↑, Apigenin, a flavonoid found in various herbs and plants, has garnered significant attention for its neuroprotective properties
*antiOx↑, shown to possess potent antioxidant activity, which is thought to play a crucial role in its neuroprotective effects
*ROS↓, Apigenin has been demonstrated to scavenge ROS, thereby reducing oxidative stress and mitigating the damage to neurons
*Inflam↓, apigenin has been found to possess anti-inflammatory properties.
*TNF-α↓, inhibit the production of pro-inflammatory cytokines, such as TNF-α and IL-1β, which are elevated in neurodegenerative diseases
*IL1β↓,
*PI3K↑, apigenin has been shown to activate the PI3K/Akt signaling pathway, which is involved in promoting neuronal survival and preventing apoptosis.
*Akt↑,
*BBB↑, Apigenin has additional neuroprotective properties due to its ability to cross the BBB and enter the brain
*NRF2↑, figure 1
*SOD↑, pigenin has also been shown to activate various antioxidant enzymes, such as superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx)
*GPx↑,
*MAPK↓, Apigenin inhibits the MAPK signalling system, which significantly reduces oxidative stress-induced damage in the brain
*Catalase↑, , including SOD, catalase, GPx and heme oxygenase-1 (HO-1) [37].
*HO-1↑,
*COX2↓, apigenin has the ability to inhibit the expression and function of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE-2), enzymes that produce inflammatory mediators
*PGE2↓,
*PPARγ↑, apigenin has the ability to inhibit the expression and function of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE-2), enzymes that produce inflammatory mediators
*TLR4↓,
*GSK‐3β↓, Apigenin can inhibit the activity of GSK-3β,
*Aβ↓, Inhibiting GSK-3 can reduce Aβ production and prevent neurofibrillary disorders.
*NLRP3↓, Apigenin suppresses nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3 (NLRP3) inflammasome activation by upregulating PPAR-γ
*BDNF↑, Apigenin causes upregulation of BDNF and TrkB expression in several animal models
*TrkB↑,
*GABA↑, Apigenin enhances GABAergic signaling by increasing the frequency of chloride channel opening, leading to increased inhibitory neurotransmission
*AChE↓, It blocks acetylcholinesterase and increases acetylcholine availability.
*Ach↑,
*5HT↑, Apigenin has been shown to increase 5-HT levels, decrease 5-HT turnover, and prevent dopamine changes.
*cognitive↑, Apigenin increases the availability of acetylcholine in the synapse after inhibiting AChE, thereby enhancing cholinergic neurotransmission and improving cognitive function and memory
*MAOA↓, apigenin acts as a monoamine oxidase (MAO) inhibitor and MAO inhibitors increase the levels of monoamines in the brain

3886- Api,    Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease
- in-vitro, AD, NA
*Inflam↓, apigenin has potent anti-inflammatory properties with the ability to protect neurites and cell viability by promoting a global down-regulation of cytokine and nitric oxide (NO) release in inflammatory cells.
*neuroP↑, demonstrate the broad neuroprotective action of apigenin against AD pathogenesis in a human disease model.
*NO↓,
*Apoptosis↓, Apigenin reduces apoptosis in sporadic AD and control neurons

3885- Api,    Anti-Inflammatory and Neuroprotective Effect of Apigenin: Studies in the GFAP-IL6 Mouse Model of Chronic Neuroinflammation
- in-vivo, AD, NA
*memory↑, Apigenin also improved spatial reference working memory in the GFAP-IL6 mice.
*Inflam↓, Apigenin is a potent anti-inflammatory and neuroprotective drug and can be potentially used for neurodegenerative diseases such as AD.
*neuroP↑,

3884- Api,    Neuroprotective, Anti-Amyloidogenic and Neurotrophic Effects of Apigenin in an Alzheimer’s Disease Mouse Model
- in-vivo, AD, NA
*memory↑, Three-month oral treatment with apigenin rescued learning deficits and relieved memory retention in APP/PS1 mice.
*Aβ↓, Apigenin also showed effects affecting APP processing and preventing Aβ burden due to the down-regulation of BACE1 and β-CTF levels, the relief of Aβ deposition, and the decrease of insoluble Aβ levels.
*BACE↓, we observed BACE1 level reduction treated with apigenin.
*antiOx↑, apigenin exhibited superoxide anion scavenging effects and improved antioxidative enzyme activity of superoxide dismutase and glutathione peroxidase.
*BDNF↑, apigenin restored neurotrophic ERK/CREB/BDNF pathway in the cerebral cortex.
*p‑CREB↑, After long-term apigenin treatment, coupled with the elevation of BDNF level, enhanced phosphorylated ERK1/2 and CREB expression were detected in the cerebral cortex
*p‑ERK↑,
*ROS↓, apigenin exhibited superoxide anion scavenging effects and improved antioxidative enzyme activity of superoxide dismutase (SOD) and GSH-Px.
*SOD↑,
*GPx↑,
*neuroP↑, observations are correlated with a prospective neuroprotective, anti-amyloidogenic and neurotrophic effects in AD deficits.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
chemoP↑,1,   ChemoSen↑,1,   ChemoSen∅,1,   neuroP↑,1,   RenoP↑,1,   ROS↑,1,   selectivity↑,1,  
Total Targets: 7

Results for Effect on Normal Cells:
5HT↑,1,   Ach↑,1,   AChE↓,1,   Akt↑,1,   AntiCan↑,1,   antiOx↑,4,   Apoptosis↓,1,   Aβ↓,2,   BACE↓,1,   BBB↑,1,   BDNF↑,2,   cardioP↑,1,   Catalase↑,1,   cognitive↑,1,   COX2↓,1,   p‑CREB↑,1,   p‑ERK↑,1,   GABA↑,1,   GPx↑,2,   GSK‐3β↓,1,   hepatoP↑,1,   HO-1↑,1,   IL1β↓,1,   Inflam↓,4,   MAOA↓,1,   MAPK↓,1,   memory↑,2,   neuroP↑,5,   NLRP3↓,1,   NO↓,1,   NRF2↑,1,   PGE2↓,1,   PI3K↑,1,   PPARγ↑,1,   ROS↓,2,   ROS∅,1,   SOD↑,2,   TLR4↓,1,   TNF-α↓,1,   toxicity↓,1,   TrkB↑,1,  
Total Targets: 41

Scientific Paper Hit Count for: neuroP, neuroprotective
6 Apigenin (mainly Parsley)
1 doxorubicin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:32  Target#:1105  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page