condition found tbRes List
Api, Apigenin (mainly Parsley): Click to Expand ⟱
Features:
Apigenin present in parsley, celery, chamomile, oranges and beverages such as tea, beer and wine.
"It exhibits cell growth arrest and apoptosis in different types of tumors such as breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach, by modulating several signaling pathways."
-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv (improves when mixed with oil/dietary fat or lipid based formulations)
-best oil might be MCT oils (medium-chain fatty acids)


Pathways:
- Often considered an antioxidant, in cancer cells it can paradoxically induce ROS production
(one report that goes against most others, by lowering ROS in cancer cells but still effective)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ (Conflicting evidence about Nrf2)
        - Combined with Metformin (reduces Nrf2) amplifies ROS production in cancer cells while sparing normal cells.
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓,
- Others: PI3K↓, AKT↓, JAK↓, 1, 2, 3, STAT↓, 1, 2, 3, 4, 5, 6, Wnt↓, β-catenin↓, AMPK↓,, α↓,, ERK↓, 5↓, JNK↓,
- Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes)
        -Ex: other flavonoids(chrysin, Luteolin, querectin) curcumin, metformin, sulforaphane, ASA
Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells

Apigenin exhibits biological effects (anticancer, anti-inflammatory, antioxidant, neuroprotective, etc.) typically at concentrations roughly in the range of 1–50 µM.

Parsley microgreens can contain up to 2-3 times more apigenin than mature parsley.
Apigenin is typically measured in the range of 1-10 μM for biological activity. Assuming a molecular weight of 270 g/mol for apigenin, we can estimate the following μM concentrations:
10uM*5L(blood)*270g/mol=13.5mg apigenin (assumes 100% bioavailability)
then an estimated 10-20 mg of apigenin per 100 g of fresh weight parlsey
2.2mg/g of apigenin fresh parsley
45mg/g of apigenin in dried parsley (wikipedia)
so 100g of parsley might acheive 10uM blood serum level (100% bioavailability)
BUT bioavailability is only 1-5%
(Supplements available in 75mg liposomal)( Apigenin Pro Liposomal, 200 mg from mcsformulas.com)

A study had 2g/kg bw (meaning 160g for 80kg person) delivered a maximum 0.13uM of plasma concentration @ 7.2hrs.
Assuming parsley is 90-95% water, then that would be ~16g of dried parsley
Conclusion: to reach 10uM would seem very difficult by oral ingestion of parsley.
Other quotes:
      “4g of dried parsley will be enough for 50kg adult”
      5mg/kg BW yields 16uM, so 80Kg person means 400mg (if dried parsley is 130mg/g, then would need 3g/d)
In many cancer cell lines, concentrations in the range of approximately 20–40 µM have been reported to shift apigenin’s activity from mild antioxidant effects (or negligible ROS changes) toward a clear pro-oxidant effect with measurable ROS increases.

Low doses: At lower concentrations, apigenin is more likely to exhibit its antioxidant properties, scavenging ROS and protecting cells from oxidative stress.
In normal cells with robust antioxidant systems, apigenin’s antioxidant effects might prevail, whereas cancer cells—often characterized by an already high level of basal ROS—can be pushed over the oxidative threshold by increased ROS production induced by apigenin.
In environments with lower free copper levels, this pro-oxidant activity is less pronounced, and apigenin may tilt the balance toward its antioxidant function.


hepatoP, L,hepatoprotective: Click to Expand ⟱
Source:
Type:
Hepatoprotective is the ability of a chemical substance to prevent damage to the liver.

Grapefruit:
-hepatoprotective potential has emerged from the study of naringenin and naringin.
Blueberries/cranberries:
-proanthocyanidins
Grape:
Nopal (Cactus pear) and tuna (Cactus pear fruit) “Opuntia ficus-indica”:
Chamomile (Matricaria chamomilla or Chamomilla recutita):
Silymarin (Silybum marianum):
Blue green algae spirulina :
Propolis (bee glue):

POLYSACCHARIDES
β-glucans


Scientific Papers found: Click to Expand⟱
2636- Api,    Apigenin unveiled: an encyclopedic review of its preclinical and clinical insights
- Review, NA, NA
*AntiCan↑, clinical studies are beginning to affirm apigenin's therapeutic benefits, showing positive effects in treating cancer, cardiovascular diseases, diabetes, neurodegenerative disorders, and inflammatory conditions.
*cardioP↑, The findings suggest that apigenin could serve as an effective therapeutic agent to reduce cardiotoxicity caused by Doxorubicin
*neuroP↑,
*Inflam↓,
*antiOx↑, apigenin (5,7,4′-trihydroxyflavone) is a flavonoid that chelates redox-active metals and has antioxidant properties
*hepatoP↑, Overall, the results indicate that apigenin alleviated liver injury by reducing inflammation and oxidative stress via suppression of the non-canonical NF-κB pathway
ChemoSen↑, Apigenin increases the cytotoxicity of sorafenib

2317- Api,    Apigenin intervenes in liver fibrosis by regulating PKM2-HIF-1α mediated oxidative stress
- in-vivo, Nor, NA
*hepatoP↑, promoting the recovery of liver function in mice with liver fibrosis.
*PKM2↓, API inhibits the transition of Pyruvate kinase isozyme type M2 (PKM2) from dimer to tetramer
*Hif1a↓, blocking PKM2-HIF-1α access
*MDA↓, leads to a decrease in malondialdehyde (MDA) and Catalase (CAT) levels and an increase in glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) levels, as well as total antioxidant capacity (T-AOC) in the liver of mice
*Catalase↓,
*GSH↑,
*SOD↑,
*GPx↑,
*TAC↑,
*α-SMA↓, API downregulated the expression of α-smooth muscle actin (α-SMA), Vimentin and Desmin in the liver tissue of mice with liver fibrosis
*Vim↓,
*ROS↓, API can inhibit HSC activation and alleviate CCl4 induced liver fibrosis by inhibiting the PKM2-HIF-1α pathway and reducing oxidative stress,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
ChemoSen↑,1,  
Total Targets: 1

Results for Effect on Normal Cells:
AntiCan↑,1,   antiOx↑,1,   cardioP↑,1,   Catalase↓,1,   GPx↑,1,   GSH↑,1,   hepatoP↑,2,   Hif1a↓,1,   Inflam↓,1,   MDA↓,1,   neuroP↑,1,   PKM2↓,1,   ROS↓,1,   SOD↑,1,   TAC↑,1,   Vim↓,1,   α-SMA↓,1,  
Total Targets: 17

Scientific Paper Hit Count for: hepatoP, L,hepatoprotective
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:32  Target#:1179  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page