condition found
Features: |
Apigenin present in parsley, celery, chamomile, oranges and beverages such as tea, beer and wine. "It exhibits cell growth arrest and apoptosis in different types of tumors such as breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach, by modulating several signaling pathways." -Note half-life reports vary 2.5-90hrs?. -low solubility of apigenin in water : BioAv (improves when mixed with oil/dietary fat or lipid based formulations) -best oil might be MCT oils (medium-chain fatty acids) Pathways: - Often considered an antioxidant, in cancer cells it can paradoxically induce ROS production (one report that goes against most others, by lowering ROS in cancer cells but still effective) - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ (Conflicting evidence about Nrf2) - Combined with Metformin (reduces Nrf2) amplifies ROS production in cancer cells while sparing normal cells. - Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, - Others: PI3K↓, AKT↓, JAK↓, 1, 2, 3, STAT↓, 1, 2, 3, 4, 5, 6, Wnt↓, β-catenin↓, AMPK↓,, α↓,, ERK↓, 5↓, JNK↓, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes) -Ex: other flavonoids(chrysin, Luteolin, querectin) curcumin, metformin, sulforaphane, ASA Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells Apigenin exhibits biological effects (anticancer, anti-inflammatory, antioxidant, neuroprotective, etc.) typically at concentrations roughly in the range of 1–50 µM. Parsley microgreens can contain up to 2-3 times more apigenin than mature parsley. Apigenin is typically measured in the range of 1-10 μM for biological activity. Assuming a molecular weight of 270 g/mol for apigenin, we can estimate the following μM concentrations: 10uM*5L(blood)*270g/mol=13.5mg apigenin (assumes 100% bioavailability) then an estimated 10-20 mg of apigenin per 100 g of fresh weight parlsey 2.2mg/g of apigenin fresh parsley 45mg/g of apigenin in dried parsley (wikipedia) so 100g of parsley might acheive 10uM blood serum level (100% bioavailability) BUT bioavailability is only 1-5% (Supplements available in 75mg liposomal)( Apigenin Pro Liposomal, 200 mg from mcsformulas.com) A study had 2g/kg bw (meaning 160g for 80kg person) delivered a maximum 0.13uM of plasma concentration @ 7.2hrs. Assuming parsley is 90-95% water, then that would be ~16g of dried parsley Conclusion: to reach 10uM would seem very difficult by oral ingestion of parsley. Other quotes: “4g of dried parsley will be enough for 50kg adult” 5mg/kg BW yields 16uM, so 80Kg person means 400mg (if dried parsley is 130mg/g, then would need 3g/d) In many cancer cell lines, concentrations in the range of approximately 20–40 µM have been reported to shift apigenin’s activity from mild antioxidant effects (or negligible ROS changes) toward a clear pro-oxidant effect with measurable ROS increases. Low doses: At lower concentrations, apigenin is more likely to exhibit its antioxidant properties, scavenging ROS and protecting cells from oxidative stress. In normal cells with robust antioxidant systems, apigenin’s antioxidant effects might prevail, whereas cancer cells—often characterized by an already high level of basal ROS—can be pushed over the oxidative threshold by increased ROS production induced by apigenin. In environments with lower free copper levels, this pro-oxidant activity is less pronounced, and apigenin may tilt the balance toward its antioxidant function. |
Source: TCGA |
Type: Proapototic |
TP53 is the most commonly mutated gene in human cancer. TP53 is a gene that encodes for the p53 tumor suppressor protein ; TP73 (Chr.1p36.33) and TP63 (Chr.3q28) genes that encode transcription factors p73 and p63, respectively, are TP53 homologous structures. p53 is a crucial tumor suppressor protein that plays a significant role in regulating the cell cycle, maintaining genomic stability, and preventing tumor formation. It is often referred to as the "guardian of the genome" due to its role in protecting cells from DNA damage and stress. TP53 gene, which encodes the p53 protein, is one of the most frequently mutated genes in human cancers. Overexpression of MDM2, an inhibitor of p53, can lead to decreased p53 activity even in the presence of wild-type p53. In some cancers, particularly those with mutant p53, there may be an overexpression of the p53 protein. Cancers with overexpression: Breast, lung, colorectal, overian, head and neck, Esophageal, bladder, pancreatic, and liver. |
1548- | Api,  |   | A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms |
- | Review, | Colon, | NA |
1553- | Api,  |   | Role of Apigenin in Cancer Prevention via the Induction of Apoptosis and Autophagy |
- | Review, | NA, | NA |
1563- | Api,  | MET,  |   | Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells |
- | in-vitro, | Nor, | HDFa | - | in-vitro, | PC, | AsPC-1 | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | LNCaP | - | in-vivo, | NA, | NA |
1545- | Api,  |   | The Potential Role of Apigenin in Cancer Prevention and Treatment |
- | Review, | NA, | NA |
2640- | Api,  |   | Apigenin: A Promising Molecule for Cancer Prevention |
- | Review, | Var, | NA |
2638- | Api,  |   | Apigenin, by activating p53 and inhibiting STAT3, modulates the balance between pro-apoptotic and pro-survival pathways to induce PEL cell death |
- | in-vitro, | lymphoma, | PEL |
2632- | Api,  |   | Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress |
- | in-vitro, | EC, | NA |
1564- | Api,  |   | Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation |
- | in-vitro, | Pca, | 22Rv1 | - | in-vivo, | NA, | NA |
180- | Api,  |   | Induction of caspase-dependent apoptosis by apigenin by inhibiting STAT3 signaling in HER2-overexpressing MDA-MB-453 breast cancer cells |
- | in-vitro, | BC, | MDA-MB-231 |
- | in-vitro, | BC, | BT474 |
173- | Api,  |   | Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells |
- | in-vitro, | Colon, | HCT116 |
310- | Api,  |   | Apigenin inhibits renal cell carcinoma cell proliferation |
- | vitro+vivo, | RCC, | ACHN | - | in-vitro, | RCC, | 786-O | - | in-vitro, | RCC, | Caki-1 | - | in-vitro, | RCC, | HK-2 |
581- | Api,  | Cisplatin,  |   | The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapy |
- | in-vitro, | Pca, | CD44+ |
578- | Api,  | Cisplatin,  |   | Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis |
- | in-vitro, | Lung, | A549 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Pca, | HeLa | - | in-vitro, | Lung, | H1299 |
416- | Api,  |   | In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant Mesothelioma |
- | vitro+vivo, | NA, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:32 Target#:236 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid