condition found tbRes List
Api, Apigenin (mainly Parsley): Click to Expand ⟱
Features:
Apigenin present in parsley, celery, chamomile, oranges and beverages such as tea, beer and wine.
"It exhibits cell growth arrest and apoptosis in different types of tumors such as breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach, by modulating several signaling pathways."
-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv (improves when mixed with oil/dietary fat or lipid based formulations)
-best oil might be MCT oils (medium-chain fatty acids)


Pathways:
- Often considered an antioxidant, in cancer cells it can paradoxically induce ROS production
(one report that goes against most others, by lowering ROS in cancer cells but still effective)
- ROS↑ related: MMP↓(ΔΨm), ER Stress, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ (Conflicting evidence about Nrf2)
        - Combined with Metformin (reduces Nrf2) amplifies ROS production in cancer cells while sparing normal cells.
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓,
- Others: PI3K↓, AKT↓, JAK↓, 1, 2, 3, STAT↓, 1, 2, 3, 4, 5, 6, Wnt↓, β-catenin↓, AMPK↓,, α↓,, ERK↓, 5↓, JNK↓,
- Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes)
        -Ex: other flavonoids(chrysin, Luteolin, querectin) curcumin, metformin, sulforaphane, ASA
Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells

Apigenin exhibits biological effects (anticancer, anti-inflammatory, antioxidant, neuroprotective, etc.) typically at concentrations roughly in the range of 1–50 µM.

Parsley microgreens can contain up to 2-3 times more apigenin than mature parsley.
Apigenin is typically measured in the range of 1-10 μM for biological activity. Assuming a molecular weight of 270 g/mol for apigenin, we can estimate the following μM concentrations:
10uM*5L(blood)*270g/mol=13.5mg apigenin (assumes 100% bioavailability)
then an estimated 10-20 mg of apigenin per 100 g of fresh weight parlsey
2.2mg/g of apigenin fresh parsley
45mg/g of apigenin in dried parsley (wikipedia)
so 100g of parsley might acheive 10uM blood serum level (100% bioavailability)
BUT bioavailability is only 1-5%
(Supplements available in 75mg liposomal)( Apigenin Pro Liposomal, 200 mg from mcsformulas.com)

A study had 2g/kg bw (meaning 160g for 80kg person) delivered a maximum 0.13uM of plasma concentration @ 7.2hrs.
Assuming parsley is 90-95% water, then that would be ~16g of dried parsley
Conclusion: to reach 10uM would seem very difficult by oral ingestion of parsley.
Other quotes:
      “4g of dried parsley will be enough for 50kg adult”
      5mg/kg BW yields 16uM, so 80Kg person means 400mg (if dried parsley is 130mg/g, then would need 3g/d)
In many cancer cell lines, concentrations in the range of approximately 20–40 µM have been reported to shift apigenin’s activity from mild antioxidant effects (or negligible ROS changes) toward a clear pro-oxidant effect with measurable ROS increases.

Low doses: At lower concentrations, apigenin is more likely to exhibit its antioxidant properties, scavenging ROS and protecting cells from oxidative stress.
In normal cells with robust antioxidant systems, apigenin’s antioxidant effects might prevail, whereas cancer cells—often characterized by an already high level of basal ROS—can be pushed over the oxidative threshold by increased ROS production induced by apigenin.
In environments with lower free copper levels, this pro-oxidant activity is less pronounced, and apigenin may tilt the balance toward its antioxidant function.


ER Stress, endoplasmic reticulum (ER) stress signaling pathway: Click to Expand ⟱
Source:
Type:
Protein expression of ATF, GRP78, and GADD153 which is a hall marker of ER stress.
The endoplasmic reticulum (ER) stress signaling pathway plays a crucial role in maintaining cellular homeostasis and responding to various stressors, including those encountered in cancer. When cells experience stress, such as the accumulation of misfolded proteins, they activate a series of signaling pathways collectively known as the unfolded protein response (UPR). The UPR aims to restore normal function by enhancing the protein-folding capacity of the ER, degrading misfolded proteins, and, if the stress is unresolved, triggering apoptosis.
The activation of ER stress pathways can contribute to resistance against chemotherapy and targeted therapies. Cancer cells may utilize the UPR to survive treatment-induced stress, making it challenging to achieve effective therapeutic outcomes.

-ER stress-associated proteins include: phosphorylation of PERK, eIF2α, ATF4, CHOP and cleaved-caspase 12



Scientific Papers found: Click to Expand⟱
2637- Api,    Apigenin Alleviates Endoplasmic Reticulum Stress-Mediated Apoptosis in INS-1 β-Cells
- in-vitro, Diabetic, NA
*other↝, In the present study, the anti-diabetic effect of apigenin on pancreatic β-cell insulin secretion, apoptosis, and the mechanism underlying its anti-diabetic effects, were investigated in the INS-ID β-cell line
*Insulin↑, The results showed that apigenin concentration-dependently facilitated 11.1-mM glucose-induced insulin secretion, which peaked at 30 µM
ER Stress↓, Apigenin also concentration-dependently inhibited the expression of endoplasmic reticulum (ER) stress signaling proteins
*CHOP↓, CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) and cleaved caspase-3
*cl‑Casp3↓,
*ROS↓, In contrast, the cytoprotective effect of apigenin against oxidative stress, inflammation, apoptosis, and oxidative and ER stresses has been demonstrated in various cell types
*Inflam↓,
*TXNIP↓, expression of TXNIP, which was increased by the thapsigargin treatment, was downregulated in INS-1D cells in response to apigenin.

2635- Api,  CUR,    Synergistic Effect of Apigenin and Curcumin on Apoptosis, Paraptosis and Autophagy-related Cell Death in HeLa Cells
- in-vitro, Cerv, HeLa
TumCD↑, Treatment with a combination of apigenin and curcumin increased the expression levels of genes related to cell death in HeLa cells 1.29- to 27.6-fold.
eff↑, combination of curcumin and apigenin showed a synergistic anti-tumor effect
TumAuto↑, autophagic cell death, as well as ER stress-associated paraptosis
ER Stress↑,
Paraptosis↑,
GRP78/BiP↓, GRP78 expression was down-regulated, and massive cytoplasmic vacuolization was observed in HeLa cells
Dose↝, combined use of 0.09 μg/μl curcumin and 0.06 μg/μl apigenin showed a synergistic anti-tumor effect

2634- Api,    Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells
- in-vitro, CRC, HCT116
TumCG↓, Apigenin exerted cytotoxic effect on the cells via inhibiting cell growth in a dose-time-dependent manner and causing morphological changes, arrested cell cycle progression at G0/G1 phase
TumCCA↑,
MMP↓, decreased mitochondrial membrane potential of the treated cells
ROS↑, Apigenin increased respective ROS generation and Ca2+ release and thereby, caused ER stress in the treated cells.
Ca+2↑,
ER Stress↑,
mtDam↑, together with damaged mitochondrial membrane, and upregulated protein expression of CHOP, DR5, cleaved BID, Bax, cytochrome c, cleaved caspase-3, cleaved caspase-8 and cleaved caspase-9, which triggered apoptosis of the cells.
CHOP↑,
DR5↑,
cl‑BID↑,
BAX↑,
Cyt‑c↑,
cl‑Casp3↑,
cl‑Casp8↑,
cl‑Casp9↑,
Apoptosis↑,

2633- Api,    Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cells
- in-vitro, EC, NA
TumCP↓, Apigenin reduced proliferation and induced cell cycle arrest and apoptosis in the both endometriosis cell lines
TumCCA↑,
MMP↓, In addition, it disrupted mitochondrial membrane potential (MMP) which was accompanied by an increase in concentration of calcium ions in the cytosol and in pro-apoptotic proteins including Bax and cytochrome c in the VK2/E6E7 and End1/E6E7 cells
Ca+2↑,
BAX↑,
Cyt‑c↑,
ROS↑, Moreover, apigenin treated cells accumulated excessive reactive oxygen species (ROS), and experienced lipid peroxidation and endoplasmic reticulum (ER) stress with activation of the unfolded protein response (UPR) regulatory proteins.
lipid-P↑,
ER Stress↑,
UPR↑,
p‑ERK↓, Apigenin inhibited the phosphorylation of ERK1/2
ERK↓, Similar to previous studies, apigenin-induced apoptosis was also mediated by inactivation of ERK1/2 and JNK proteins and regulation of AKT protein in human endometriosis cells.
JNK↑,

2632- Api,    Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress
- in-vitro, EC, NA
TumCP↓, We found that API could inhibit the proliferation of Ishikawa cells at IC50 of 45.55 μM, arrest the cell cycle at G2/M phase, induce apoptosis by inhibiting Bcl-xl and increasing Bax, Bak and Caspases.
TumCCA↑,
Apoptosis↑,
Bcl-2↓,
BAX↑,
Bak↑,
Casp↑,
ER Stress↑, Further, API could induce apoptosis by activating the endoplasmic reticulum (ER) stress pathway by increasing the Ca2+, ATF4, and CHOP.
Ca+2↑, after API treatment for 48 h, the intracellular Ca2+ concentration increased in cells in a dose-dependent manner.
ATF4↑,
CHOP↑,
ROS↑, the level of intracellular ROS increased gradually with the increase of API concentration.
MMP↓, mitochondrial membrane potential of 30 μM, 50 μM, and 70 μM groups decreased by 2.19%, 11.32%, and 14.91%, respectively.
TumCMig↓, API inhibits the migration and invasion of Ishikawa cells and the migration and invasion related gene and protein.
TumCI↓,
eff↑, In our study, API restrained the viability of Ishikawa cells, and the inhibition effect of API on Ishikawa cells was better than that of 5-FU.
P53↑, API induces p53 tumor suppressor proteins at the translational level and the induces p21
P21↑,
Cyt‑c↑, After the mitochondria release the Cyto-c, the Caspase-9 is activated, resulting in increased activity of Caspases
Casp9↑, In our study, the expression levels of Bad, Bax, Cyto-c, Caspase-9 and Caspase-3 proteins were up-regulated,
Casp3↑,
Bcl-xL↓, while the expression level of Bcl-xl was down-regulated

2631- Api,    Apigenin Induces Autophagy and Cell Death by Targeting EZH2 under Hypoxia Conditions in Gastric Cancer Cells
- in-vivo, GC, NA - in-vitro, GC, AGS
ER Stress↑, We further show that APG induces ER stress- and autophagy-related cell death through the inhibition of HIF-1α and Ezh2 under normoxia and hypoxia.
Hif1a↓, APG Inhibits HIF-1α and Induces Cell Death under Hypoxia in GC Cells
EZH2↓,
HDAC↓, Apigenin, a flavonoid found in traditional medicine, fruits, and vegetables and an HDAC inhibitor, is a powerful anti-cancer agent against various cancer cell lines.
TumAuto↑, APG Induces Autophagic Cell Death in GC Cells
p‑mTOR↓, APG decreased the phosphorylation of mTOR and increased the activation of AMPKα and ULK1
AMPKα↑,
GRP78/BiP↑, APG mediates the up-regulation of GRP78 through exosomes, and that this effect causes ER stress-induced cell death in APG-treated GC cells.
ROS↑, APG generates intracellular ROS release in colorectal cancer cells, and it causes various cell death types, including cell cycle arrest, chromatin condensation, MMP loss, intracellular Ca2+, annexin-v-positive cells, and ER stress-related cell death
MMP↓,
Ca+2↑, we found that APG exerts intracellular Ca2+ release in a dose- and time-dependent manner
ATF4↑, APG also increased ATF4 and CHOP in a time-dependent manner
CHOP↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
AMPKα↑,1,   Apoptosis↑,2,   ATF4↑,2,   Bak↑,1,   BAX↑,3,   Bcl-2↓,1,   Bcl-xL↓,1,   cl‑BID↑,1,   Ca+2↑,4,   Casp↑,1,   Casp3↑,1,   cl‑Casp3↑,1,   cl‑Casp8↑,1,   Casp9↑,1,   cl‑Casp9↑,1,   CHOP↑,3,   Cyt‑c↑,3,   Dose↝,1,   DR5↑,1,   eff↑,2,   ER Stress↓,1,   ER Stress↑,5,   ERK↓,1,   p‑ERK↓,1,   EZH2↓,1,   GRP78/BiP↓,1,   GRP78/BiP↑,1,   HDAC↓,1,   Hif1a↓,1,   JNK↑,1,   lipid-P↑,1,   MMP↓,4,   mtDam↑,1,   p‑mTOR↓,1,   P21↑,1,   P53↑,1,   Paraptosis↑,1,   ROS↑,4,   TumAuto↑,2,   TumCCA↑,3,   TumCD↑,1,   TumCG↓,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,2,   UPR↑,1,  
Total Targets: 46

Results for Effect on Normal Cells:
cl‑Casp3↓,1,   CHOP↓,1,   Inflam↓,1,   Insulin↑,1,   other↝,1,   ROS↓,1,   TXNIP↓,1,  
Total Targets: 7

Scientific Paper Hit Count for: ER Stress, endoplasmic reticulum (ER) stress signaling pathway
6 Apigenin (mainly Parsley)
1 Curcumin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:32  Target#:103  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page