condition found tbRes List
Api, Apigenin (mainly Parsley): Click to Expand ⟱
Features:
Apigenin present in parsley, celery, chamomile, oranges and beverages such as tea, beer and wine.
"It exhibits cell growth arrest and apoptosis in different types of tumors such as breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach, by modulating several signaling pathways."
-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv (improves when mixed with oil/dietary fat or lipid based formulations)
-best oil might be MCT oils (medium-chain fatty acids)


Pathways:
- Often considered an antioxidant, in cancer cells it can paradoxically induce ROS production
(one report that goes against most others, by lowering ROS in cancer cells but still effective)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ (Conflicting evidence about Nrf2)
        - Combined with Metformin (reduces Nrf2) amplifies ROS production in cancer cells while sparing normal cells.
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓,
- Others: PI3K↓, AKT↓, JAK↓, 1, 2, 3, STAT↓, 1, 2, 3, 4, 5, 6, Wnt↓, β-catenin↓, AMPK↓,, α↓,, ERK↓, 5↓, JNK↓,
- Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes)
        -Ex: other flavonoids(chrysin, Luteolin, querectin) curcumin, metformin, sulforaphane, ASA
Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells

Apigenin exhibits biological effects (anticancer, anti-inflammatory, antioxidant, neuroprotective, etc.) typically at concentrations roughly in the range of 1–50 µM.

Parsley microgreens can contain up to 2-3 times more apigenin than mature parsley.
Apigenin is typically measured in the range of 1-10 μM for biological activity. Assuming a molecular weight of 270 g/mol for apigenin, we can estimate the following μM concentrations:
10uM*5L(blood)*270g/mol=13.5mg apigenin (assumes 100% bioavailability)
then an estimated 10-20 mg of apigenin per 100 g of fresh weight parlsey
2.2mg/g of apigenin fresh parsley
45mg/g of apigenin in dried parsley (wikipedia)
so 100g of parsley might acheive 10uM blood serum level (100% bioavailability)
BUT bioavailability is only 1-5%
(Supplements available in 75mg liposomal)( Apigenin Pro Liposomal, 200 mg from mcsformulas.com)

A study had 2g/kg bw (meaning 160g for 80kg person) delivered a maximum 0.13uM of plasma concentration @ 7.2hrs.
Assuming parsley is 90-95% water, then that would be ~16g of dried parsley
Conclusion: to reach 10uM would seem very difficult by oral ingestion of parsley.
Other quotes:
      “4g of dried parsley will be enough for 50kg adult”
      5mg/kg BW yields 16uM, so 80Kg person means 400mg (if dried parsley is 130mg/g, then would need 3g/d)
In many cancer cell lines, concentrations in the range of approximately 20–40 µM have been reported to shift apigenin’s activity from mild antioxidant effects (or negligible ROS changes) toward a clear pro-oxidant effect with measurable ROS increases.

Low doses: At lower concentrations, apigenin is more likely to exhibit its antioxidant properties, scavenging ROS and protecting cells from oxidative stress.
In normal cells with robust antioxidant systems, apigenin’s antioxidant effects might prevail, whereas cancer cells—often characterized by an already high level of basal ROS—can be pushed over the oxidative threshold by increased ROS production induced by apigenin.
In environments with lower free copper levels, this pro-oxidant activity is less pronounced, and apigenin may tilt the balance toward its antioxidant function.


TumCCA, Tumor cell cycle arrest: Click to Expand ⟱
Source:
Type:
Tumor cell cycle arrest refers to the process by which cancer cells stop progressing through the cell cycle, which is the series of phases that a cell goes through to divide and replicate. This arrest can occur at various checkpoints in the cell cycle, including the G1, S, G2, and M phases. S, G1, G2, and M are the four phases of mitosis.


Scientific Papers found: Click to Expand⟱
1548- Api,    A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms
- Review, Colon, NA
*BioAv↓, Apigenin is not easily absorbed orally because of its low water solubility, which is only 2.16 g/mL
*Half-Life∅, Apigenin is slowly absorbed and eliminated from the body, as evidenced by its half‐life of 91.8 h in the blood
selectivity↑, selective anticancer effects and effective cell cytotoxic activity while exhibiting negligible toxicity to ordinary cells
*toxicity↓, intentional consumption in higher doses, as the toxicity hazard is low
Wnt/(β-catenin)↓, inhibiting the Wnt/β‐catenin
P53↑,
P21↑,
PI3K↓,
Akt↓,
mTOR↓,
TumCCA↑, G2/M
TumCI↓,
TumCMig↓,
STAT3↓, apigenin can activate p53, which improves catalase and inhibits STAT3,
PKM2↓,
EMT↓, reversing increases in epithelial–mesenchymal transition (EMT)
cl‑PARP↑, apigenin increases the cleavage of poly‐(ADP‐ribose) polymerase (PARP) and rapidly enhances caspase‐3 activity,
Casp3↑,
Bax:Bcl2↑,
VEGF↓, apigenin suppresses VEGF transcription
Hif1a↓, decrease in hypoxia‐inducible factor 1‐alpha (HIF‐1α
Dose∅, effectiveness of apigenin (200 and 300 mg/kg) in treating CC was evaluated by establishing xenografts on Balb/c nude mice.
GLUT1↓, Apigenin has been found to inhibit GLUT1 activity and glucose uptake in human pancreatic cancer cells
GlucoseCon↓,

1553- Api,    Role of Apigenin in Cancer Prevention via the Induction of Apoptosis and Autophagy
- Review, NA, NA
Dose∅, oral administration of apigenin (20 and 50 μg/mice) for 20 weeks reduced tumor volumes
TumVol↓,
Dose∅, 15-week period of oral administration of apigenin (2.5 mg/kg) in hamsters resulted in reduction of tumor volume
COX2↓, topical application of apigenin (5 μM) prior to UVB-exposure attenuated the expression of COX-2 and hypoxia inducible factor (HIF)-1α,
Hif1a↓,
TumCCA↑, apigenin was capable to promote cell cycle arrest and induction of apoptosis through p53-related pathways
P53↑,
P21↑, induction of the cell cycle inhibitor p21/WAF1,
Casp3↑,
DNAdam↑, DNA fragmentation
TumAuto↝, Only a small number of studies have observed the induction of autophagy in response to apigenin and the results are controversial

1552- Api,    Apigenin inhibits the growth of colorectal cancer through down-regulation of E2F1/3 by miRNA-215-5p
- in-vitro, CRC, HCT116
Apoptosis↑,
TumCP↓,
miR-215-5p↑, miRNA-215-5p showed markedly increased
TumCCA↑, cell cycle arrest at G0/G1 phase induced by API
E2Fs↓, down-regulation of E2F1/3 by miRNA-215-5p

1547- Api,    Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading
- Review, NA, NA
angioG↓,
EMT↓,
CSCs↓,
TumCCA↑,
Dose∅, Dried parsley 45,035ug/g: Dried chamomille flower 3000–5000ug/g: Parsley 2154.6ug/g:
ROS↑, activity of Apigenin has been linked to the induction of oxidative stress in cancer cells
MMP↓, triggering intracellular ROS accumulation and loss of mitochondrial integrity
Catalase↓, catalase and glutathione (GSH), molecules involved in alleviating oxidative stress, were downregulated after Apigenin
GSH↓,
PI3K↓, suppression of the PI3K/Akt and NF-κB
Akt↓,
NF-kB↓,
OCT4↓, glycosylated form of Apigenin (i.e., Vitexin) was able to suppress stemness features of human endometrial cancer, as documented by the downregulation of Oct4 and Nanog
Nanog↓,
SIRT3↓, inhibition of sirtuin-3 (SIRT3) and sirtuin-6 (SIRT6) protein levels
SIRT6↓,
eff↑, ability of Apigenin to interfere with CSC features is often enhanced by the co-administration of other flavonoids, such as chrysin
eff↑, Apigenin combined with a chemotherapy agent, temozolomide (TMZ), was used on glioblastoma cells and showed better performance in cell arrest at the G2 phase compared with Apigenin or TMZ alone,
Cyt‑c↑, release of cytochrome c (Cyt c)
Bax:Bcl2↑, Apigenin has been shown to induce the apoptosis death pathway by increasing the Bax/Bcl-2 ratio
p‑GSK‐3β↓, Apigenin has been shown to prevent activation of phosphorylation of glycogen synthase kinase-3 beta (GSK-3β)
FOXO3↑, Apigenin administration increased the expression of forkhead box O3 (FOXO3)
p‑STAT3↓, Apigenin can induce apoptosis via inhibition of STAT3 phosphorylation
MMP2↓, downregulation of the expression of MMP-2 and MMP-9
MMP9↓,
COX2↓, downregulation of PI3K/Akt in leukemia HL60 cells [156,157] and of COX2, iNOS, and reactive oxygen species (ROS) accumulation in breast cancer cells
MMPs↓, triggering intracellular ROS accumulation and loss of mitochondrial integrity, as proved by low MMP in Apigenin-treated cells
NRF2↓, suppressed the nuclear factor erythroid 2-related factor 2 (Nrf2)
HDAC↓, inhibition of histone deacetylases (HDACs) is the mechanism through which Apigenin induces apoptosis in prostate cancer cells
Telomerase↓, Apigenin has been shown to downregulate telomerase activity
eff↑, Indeed, co-administration with 5-fluorouracil (5-FU) increased the efficacy of Apigenin in human colon cancer through p53 upregulation and ROS accumulation
eff↑, Apigenin synergistically enhances the cytotoxic effects of Sorafenib
eff↑, pretreatment of pancreatic BxPC-3 cells for 24 h with a low concentration of Apigenin and gemcitabine caused the inhibition of the GSK-3β/NF-κB signaling pathway, leading to the induction of apoptosis
eff↑, In NSCLC cells, compared to monotherapy, co-treatment with Apigenin and naringenin increased the apoptotic rate through ROS accumulation, Bax/Bcl-2 increase, caspase-3 activation, and mitochondrial dysfunction
eff↑, Several studies have shown that Apigenin-induced autophagy may play a pro-survival role in cancer therapy; in fact, inhibition of autophagy has been shown to exacerbate the toxicity of Apigenin
XIAP↓,
survivin↓,
CK2↓,
HSP90↓,
Hif1a↓,
FAK↓,
EMT↓,

1546- Api,    Apigenin in Cancer Prevention and Therapy: A Systematic Review and Meta-Analysis of Animal Models
- Review, NA, NA
TumVol↓, Apigenin reduces tumor volume (SMD=-3.597, 95% CI: -4.502 to -2.691, p<0.001)
TumW↓, tumor-weight (SMD=-2.213, 95% CI: -2.897 to -1.529, p<0.001)
AntiCan↑, tumor number (SMD=-1.081, 95% CI: -1.599 to -0.563, p<0.001) and tumor load (SMD=-1.556, 95% CI: -2.336 to -0.776, p<0.001).
Apoptosis↑, exerts anti-tumor effects mainly by inducing apoptosis/cell-cycle arrest
TumCCA↑,

1545- Api,    The Potential Role of Apigenin in Cancer Prevention and Treatment
- Review, NA, NA
TNF-α↓, Apigenin downregulates the TNFα
IL6↓,
IL1α↓,
P53↑,
Bcl-xL↓,
Bcl-2↓,
BAX↑,
Hif1a↓, Apigenin inhibited HIF-1alpha and vascular endothelial growth factor expression
VEGF↓,
TumCCA↑, Apigenin exposure induces G2/M phase cell cycle arrest, DNA damage, apoptosis and p53 accumulation
DNAdam↑,
Apoptosis↑,
CycB↓,
cycA1↓,
CDK1↓,
PI3K↓,
Akt↓,
mTOR↓,
IKKα↓, , decreases IKKα kinase activity,
ERK↓,
p‑Akt↓,
p‑P70S6K↓,
p‑S6↓,
p‑ERK↓, decreased the expression of phosphorylated (p)-ERK1/2 proteins, p-AKT and p-mTOR
p‑P90RSK↑,
STAT3↓,
MMP2↓, Apigenin down-regulated Signal transducer and activator of transcription 3target genes MMP-2, MMP-9 and vascular endothelial growth factor
MMP9↓,
TumCP↓, Apigenin significantly suppressed colorectal cancer cell proliferation, migration, invasion and organoid growth through inhibiting the Wnt/β-catenin signaling
TumCMig↓,
TumCI↓,
Wnt/(β-catenin)↓,

1537- Api,    Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer
- Review, PC, NA
TumCP↓,
TumCCA↑,
Apoptosis↑,
MMPs↓,
Akt↓,
*BioAv↑, delivery systems (nanosuspension, polymeric micelles, liposomes).
*BioAv↓, low solubility of apigenin in water (1.35 μg/mL) and its high permeability
Half-Life∅, (appearing in blood circulation after 3.9 h)
Hif1a↓, (HIF-1α) is targeted by apigenin in several cancers such as, ovarian cancer, prostate cancer, and lung cancer
GLUT1↓, GLUT-1 is blocked by apigenin (0–100 μM) under normoxic conditions
VEGF↓,
ChemoSen↑, apigenin can be applied as a chemosensitizer
ROS↑, accumulation of ROS produced were stimulated
Bcl-2↓, down-regulation of anti-apoptotic factors Bcl-2 and Bcl-xl as well as the up-regulation of apoptotic factors Bax and Bim.
Bcl-xL↓,
BAX↑,
BIM↑,

1536- Api,    Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells
- in-vitro, MM, MSTO-211H - in-vitro, MM, H2452
tumCV↓,
ROS↑, increase in intracellular reactive oxygen species (ROS)
MMP↓, caused the loss of mitochondrial membrane potential (ΔΨm)
ATP↓, ATP depletion
Apoptosis↑,
Necroptosis↑,
DNAdam↑,
TumCCA↑, delay at the G2/M phase of cell cycle
Casp3↑,
cl‑PARP↑,
MLKL↑,
p‑RIP3↑,
Bax:Bcl2↑,
eff↓, ATP supplementation restored cell viability and levels of DNA damage-, apoptosis- and necroptosis-related proteins that apigenin caused.
eff↓, N-acetylcysteine reduced ROS production and improved ΔΨm loss and cell death that were caused by apigenin.

2640- Api,    Apigenin: A Promising Molecule for Cancer Prevention
- Review, Var, NA
chemoP↑, considerable potential for apigenin to be developed as a cancer chemopreventive agent.
ITGB4↓, apigenin inhibits hepatocyte growth factor-induced MDA-MB-231 cells invasiveness and metastasis by blocking Akt, ERK, and JNK phosphorylation and also inhibits clustering of β-4-integrin function at actin rich adhesive site
TumCI↓,
TumMeta↓,
Akt↓,
ERK↓,
p‑JNK↓,
*Inflam↓, The anti-inflammatory properties of apigenin are evident in studies that have shown suppression of LPS-induced cyclooxygenase-2 and nitric oxide synthase-2 activity and expression in mouse macrophages
*PKCδ↓, Apigenin has been reported to inhibit protein kinase C activity, mitogen activated protein kinase (MAPK), transformation of C3HI mouse embryonic fibroblasts and the downstream oncogenes in v-Ha-ras-transformed NIH3T3 cells (43, 44).
*MAPK↓,
EGFR↓, Apigenin treatment has been shown to decrease the levels of phosphorylated EGFR tyrosine kinase and of other MAPK and their nuclear substrate c-myc, which causes apoptosis in anaplastic thyroid cancer cells
CK2↓, apigenin has been shown to inhibit the expression of casein kinase (CK)-2 in both human prostate and breast cancer cells
TumCCA↑, apigenin induces a reversible G2/M and G0/G1 arrest by inhibiting p34 (cdc2) kinase activity, accompanied by increased p53 protein stability
CDK1↓, inhibiting p34 (cdc2) kinase activity
P53↓,
P21↑, Apigenin has also been shown to induce WAF1/p21 levels resulting in cell cycle arrest and apoptosis in androgen-responsive human prostate cancer
Bax:Bcl2↑, Apigenin treatment has been shown to alter the Bax/Bcl-2 ratio in favor of apoptosis, associated with release of cytochrome c and induction of Apaf-1, which leads to caspase activation and PARP-cleavage
Cyt‑c↑,
APAF1↑,
Casp↑,
cl‑PARP↑,
VEGF↓, xposure of endothelial cells to apigenin results in suppression of the expression of VEGF, an important factor in angiogenesis via degradation of HIF-1α protein
Hif1a↓,
IGF-1↓, oral administration of apigenin suppresses the levels of IGF-I in prostate tumor xenografts and increases levels of IGFBP-3, a binding protein that sequesters IGF-I in vascular circulation
IGFBP3↑,
E-cadherin↑, apigenin exposure to human prostate carcinoma DU145 cells caused increase in protein levels of E-cadherin and inhibited nuclear translocation of β-catenin and its retention to the cytoplasm
β-catenin/ZEB1↓,
HSPs↓, targets of apigenin include heat shock proteins (61), telomerase (68), fatty acid synthase (69), matrix metalloproteinases (70), and aryl hydrocarbon receptor activity (71) HER2/neu (72), casein kinase 2 alpha
Telomerase↓,
FASN↓,
MMPs↓,
HER2/EBBR2↓,
CK2↓,
eff↑, The combination of sulforaphane and apigenin resulted in a synergistic induction of UGT1A1
AntiAg↑, Apigenin inhibit platelet function through several mechanisms including blockade of TxA
eff↑, ex vivo anti-platelet effect of aspirin in the presence of apigenin, which encourages the idea of the combined use of aspirin and apigenin in patients in which aspirin fails to properly suppress the TxA
FAK↓, Apigenin inhibits expression of focal adhesion kinase (FAK), migration and invasion of human ovarian cancer A2780 cells.
ROS↑, Apigenin generates reactive oxygen species, causes loss of mitochondrial Bcl-2 expression, increases mitochondrial permeability, causes cytochrome C release, and induces cleavage of caspase 3, 7, 8, and 9 and the concomitant cleavage of the inhibitor
Bcl-2↓,
Cyt‑c↑,
cl‑Casp3↑,
cl‑Casp7↑,
cl‑Casp8↑,
cl‑Casp9↑,
cl‑IAP2↑,
AR↓, significant decrease in AR protein expression along with a decrease in intracellular and secreted forms of PSA. Apigenin treatment of LNCaP cells
PSA↓,
p‑pRB↓, apigenin inhibited hyperphosphorylation of the pRb protein
p‑GSK‐3β↓, Inhibition of p-Akt by apigenin resulted in decreased phosphorylation of GSK-3beta.
CDK4↓, both flavonoids exhibited cell growth inhibitory effects which were due to cell cycle arrest and downregulation of the expression of CDK4
ChemoSen↑, Combination therapy of gemcitabine and apigenin enhanced anti-tumor efficacy in pancreatic cancer cells (MiaPaca-2, AsPC-1)
Ca+2↑, apigenin in neuroblastoma SH-SY5Y cells resulted in increased apoptosis, which was associated with increases in intracellular free [Ca(2+)] and Bax:Bcl-2 ratio, mitochondrial release of cytochrome c and activation of caspase-9, calpain, caspase-3,12
cal2↑,

2634- Api,    Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells
- in-vitro, CRC, HCT116
TumCG↓, Apigenin exerted cytotoxic effect on the cells via inhibiting cell growth in a dose-time-dependent manner and causing morphological changes, arrested cell cycle progression at G0/G1 phase
TumCCA↑,
MMP↓, decreased mitochondrial membrane potential of the treated cells
ROS↑, Apigenin increased respective ROS generation and Ca2+ release and thereby, caused ER stress in the treated cells.
Ca+2↑,
ER Stress↑,
mtDam↑, together with damaged mitochondrial membrane, and upregulated protein expression of CHOP, DR5, cleaved BID, Bax, cytochrome c, cleaved caspase-3, cleaved caspase-8 and cleaved caspase-9, which triggered apoptosis of the cells.
CHOP↑,
DR5↑,
cl‑BID↑,
BAX↑,
Cyt‑c↑,
cl‑Casp3↑,
cl‑Casp8↑,
cl‑Casp9↑,
Apoptosis↑,

2633- Api,    Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cells
- in-vitro, EC, NA
TumCP↓, Apigenin reduced proliferation and induced cell cycle arrest and apoptosis in the both endometriosis cell lines
TumCCA↑,
MMP↓, In addition, it disrupted mitochondrial membrane potential (MMP) which was accompanied by an increase in concentration of calcium ions in the cytosol and in pro-apoptotic proteins including Bax and cytochrome c in the VK2/E6E7 and End1/E6E7 cells
Ca+2↑,
BAX↑,
Cyt‑c↑,
ROS↑, Moreover, apigenin treated cells accumulated excessive reactive oxygen species (ROS), and experienced lipid peroxidation and endoplasmic reticulum (ER) stress with activation of the unfolded protein response (UPR) regulatory proteins.
lipid-P↑,
ER Stress↑,
UPR↑,
p‑ERK↓, Apigenin inhibited the phosphorylation of ERK1/2
ERK↓, Similar to previous studies, apigenin-induced apoptosis was also mediated by inactivation of ERK1/2 and JNK proteins and regulation of AKT protein in human endometriosis cells.
JNK↑,

2632- Api,    Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress
- in-vitro, EC, NA
TumCP↓, We found that API could inhibit the proliferation of Ishikawa cells at IC50 of 45.55 μM, arrest the cell cycle at G2/M phase, induce apoptosis by inhibiting Bcl-xl and increasing Bax, Bak and Caspases.
TumCCA↑,
Apoptosis↑,
Bcl-2↓,
BAX↑,
Bak↑,
Casp↑,
ER Stress↑, Further, API could induce apoptosis by activating the endoplasmic reticulum (ER) stress pathway by increasing the Ca2+, ATF4, and CHOP.
Ca+2↑, after API treatment for 48 h, the intracellular Ca2+ concentration increased in cells in a dose-dependent manner.
ATF4↑,
CHOP↑,
ROS↑, the level of intracellular ROS increased gradually with the increase of API concentration.
MMP↓, mitochondrial membrane potential of 30 μM, 50 μM, and 70 μM groups decreased by 2.19%, 11.32%, and 14.91%, respectively.
TumCMig↓, API inhibits the migration and invasion of Ishikawa cells and the migration and invasion related gene and protein.
TumCI↓,
eff↑, In our study, API restrained the viability of Ishikawa cells, and the inhibition effect of API on Ishikawa cells was better than that of 5-FU.
P53↑, API induces p53 tumor suppressor proteins at the translational level and the induces p21
P21↑,
Cyt‑c↑, After the mitochondria release the Cyto-c, the Caspase-9 is activated, resulting in increased activity of Caspases
Casp9↑, In our study, the expression levels of Bad, Bax, Cyto-c, Caspase-9 and Caspase-3 proteins were up-regulated,
Casp3↑,
Bcl-xL↓, while the expression level of Bcl-xl was down-regulated

1151- Api,    Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: In vitro and in vivo study
- in-vitro, Pca, PC3 - in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
TumCCA↑,
Apoptosis↑,
HDAC↓, HDAC1 and HDAC3
P21↑,
BAX↑,
TumCG↓,
Bcl-2↓,
Bax:Bcl2↑, shifting the bax/bcl2 ratio in favor of apoptosis
HDAC1↓,
HDAC3↓,

1008- Api,    Apigenin-induced lysosomal degradation of β-catenin in Wnt/β-catenin signaling
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW480
Wnt/(β-catenin)↓,
β-catenin/ZEB1↓,
TumAuto↑,
Akt↓,
mTOR↓,
tumCV↓,
TumCCA↑, cell cycle arrest at G2/M phase
TumAuto↑, data suggested the involvement of autophagy in apigenin-induced β-catenin down-regulation during Wnt signaling
p‑Akt↓,
p‑p70S6↓,
p‑4E-BP1↓,

310- Api,    Apigenin inhibits renal cell carcinoma cell proliferation
- vitro+vivo, RCC, ACHN - in-vitro, RCC, 786-O - in-vitro, RCC, Caki-1 - in-vitro, RCC, HK-2
TumCCA↑, G2/M cell cycle arrest.
p‑ATM↑, p-ATM
p‑CHK1↑, p-Chk2
p‑CDC25↑, p-Cdc25c
p‑cDC2↑, phosphorylated Cdc2 (p-Cdc2 on tyrosine15), also increased
P53↑, 10, 20, 40 uM
BAX↑,
Casp9↑,
Casp3↑,

416- Api,    In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant Mesothelioma
- vitro+vivo, NA, NA
Bax:Bcl2↑,
P53↑,
ROS↑,
Casp9↑,
Casp8↑,
cl‑PARP1↑, cleavage
p‑ERK⇅, Here, we demonstrated that API treatment was able to increase ERK1/2 phosphorylation in MM-B1, H-Meso-1, and #40a cells while induced a decrease of ERK1/2 activation in MM-F1 cells.
p‑JNK↓,
p‑p38↑,
p‑Akt↓,
cJun↓,
NF-kB↓,
EGFR↓,
TumCCA↑, increase of the percentage of cells in subG1 phase

314- Api,    Apigenin impairs oral squamous cell carcinoma growth in vitro inducing cell cycle arrest and apoptosis
- in-vitro, SCC, HaCaT - in-vitro, SCC, SCC25
TumCCA↑, G2/M cell cycle arrest.
cycD1↓,
cycE↓,
CDK1/2/5/9∅, CDK1

313- Api,    Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells
- in-vitro, Thyroid, BCPAP
LC3s↝, conversion of LC3 protein
p62↓,
ROS↑,
TumCCA↑, G2/M cell cycle arrest.
CDC25↓,
TumAuto↑,
Beclin-1↑,
AVOs↑,
DNAdam↑,

311- Api,    Apigenin inhibits the proliferation of adenoid cystic carcinoma via suppression of glucose transporter-1
- in-vitro, ACC, NA
GLUT1↓,
CC(CDKs/cyclins)↓, CCK-8 (10-160 uM)
TumCCA↑, G2/M cell cycle arrest.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 19

Results for Effect on Cancer/Diseased Cells:
p‑4E-BP1↓,1,   Akt↓,6,   p‑Akt↓,3,   angioG↓,1,   AntiAg↑,1,   AntiCan↑,1,   APAF1↑,1,   Apoptosis↑,8,   AR↓,1,   ATF4↑,1,   p‑ATM↑,1,   ATP↓,1,   AVOs↑,1,   Bak↑,1,   BAX↑,7,   Bax:Bcl2↑,6,   Bcl-2↓,5,   Bcl-xL↓,3,   Beclin-1↑,1,   cl‑BID↑,1,   BIM↑,1,   Ca+2↑,4,   cal2↑,1,   Casp↑,2,   Casp3↑,5,   cl‑Casp3↑,2,   cl‑Casp7↑,1,   Casp8↑,1,   cl‑Casp8↑,2,   Casp9↑,3,   cl‑Casp9↑,2,   Catalase↓,1,   CC(CDKs/cyclins)↓,1,   p‑cDC2↑,1,   CDC25↓,1,   p‑CDC25↑,1,   CDK1↓,2,   CDK1/2/5/9∅,1,   CDK4↓,1,   chemoP↑,1,   ChemoSen↑,2,   p‑CHK1↑,1,   CHOP↑,2,   cJun↓,1,   CK2↓,3,   COX2↓,2,   CSCs↓,1,   cycA1↓,1,   CycB↓,1,   cycD1↓,1,   cycE↓,1,   Cyt‑c↑,6,   DNAdam↑,4,   Dose∅,4,   DR5↑,1,   E-cadherin↑,1,   E2Fs↓,1,   eff↓,2,   eff↑,10,   EGFR↓,2,   EMT↓,3,   ER Stress↑,3,   ERK↓,3,   p‑ERK↓,2,   p‑ERK⇅,1,   FAK↓,2,   FASN↓,1,   FOXO3↑,1,   GlucoseCon↓,1,   GLUT1↓,3,   GSH↓,1,   p‑GSK‐3β↓,2,   Half-Life∅,1,   HDAC↓,2,   HDAC1↓,1,   HDAC3↓,1,   HER2/EBBR2↓,1,   Hif1a↓,6,   HSP90↓,1,   HSPs↓,1,   cl‑IAP2↑,1,   IGF-1↓,1,   IGFBP3↑,1,   IKKα↓,1,   IL1α↓,1,   IL6↓,1,   ITGB4↓,1,   JNK↑,1,   p‑JNK↓,2,   LC3s↝,1,   lipid-P↑,1,   miR-215-5p↑,1,   MLKL↑,1,   MMP↓,5,   MMP2↓,2,   MMP9↓,2,   MMPs↓,3,   mtDam↑,1,   mTOR↓,3,   Nanog↓,1,   Necroptosis↑,1,   NF-kB↓,2,   NRF2↓,1,   OCT4↓,1,   P21↑,5,   p‑p38↑,1,   P53↓,1,   P53↑,6,   p62↓,1,   p‑p70S6↓,1,   p‑P70S6K↓,1,   p‑P90RSK↑,1,   cl‑PARP↑,3,   cl‑PARP1↑,1,   PI3K↓,3,   PKM2↓,1,   p‑pRB↓,1,   PSA↓,1,   p‑RIP3↑,1,   ROS↑,9,   p‑S6↓,1,   selectivity↑,1,   SIRT3↓,1,   SIRT6↓,1,   STAT3↓,2,   p‑STAT3↓,1,   survivin↓,1,   Telomerase↓,2,   TNF-α↓,1,   TumAuto↑,3,   TumAuto↝,1,   TumCCA↑,19,   TumCG↓,2,   TumCI↓,4,   TumCMig↓,3,   TumCP↓,5,   tumCV↓,2,   TumMeta↓,1,   TumVol↓,2,   TumW↓,1,   UPR↑,1,   VEGF↓,4,   Wnt/(β-catenin)↓,3,   XIAP↓,1,   β-catenin/ZEB1↓,2,  
Total Targets: 145

Results for Effect on Normal Cells:
BioAv↓,2,   BioAv↑,1,   Half-Life∅,1,   Inflam↓,1,   MAPK↓,1,   PKCδ↓,1,   toxicity↓,1,  
Total Targets: 7

Scientific Paper Hit Count for: TumCCA, Tumor cell cycle arrest
19 Apigenin (mainly Parsley)
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:32  Target#:322  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page