condition found tbRes List
FIS, Fisetin: Click to Expand ⟱
Features:
Fisetin is a plant based flavonoid. Found in strawberries(160ug/g), apples, persimmons, onions, cucumbers, grapes.

-Note half-life 3-4hrs
- Oral BioAv low (40-50%)
Pathways:
- induce ROS production in cancer cells, but also known to reduce it.
Also a claim Fisetin-Induced Reactive Oxygen Species Production Has No Effect on Apoptosis in RCC cells
Also one claim (NAC 10-20mM levels) that NAC enhances ROS/apoptosis
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Does not appear to lower antioxidants in cancer cells
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits HIF-1α↓, cMyc↓, LDH↓, GRP78↑,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells : CD133↓, β-catenin↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCCA, Tumor cell cycle arrest: Click to Expand ⟱
Source:
Type:
Tumor cell cycle arrest refers to the process by which cancer cells stop progressing through the cell cycle, which is the series of phases that a cell goes through to divide and replicate. This arrest can occur at various checkpoints in the cell cycle, including the G1, S, G2, and M phases. S, G1, G2, and M are the four phases of mitosis.


Scientific Papers found: Click to Expand⟱
2845- FIS,    Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy
- Review, Var, NA
PI3K↓, block multiple signaling pathways such as the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) and p38
Akt↓,
mTOR↓,
p38↓,
*antiOx↑, antioxidant, anti-inflammatory, antiangiogenic, hypolipidemic, neuroprotective, and antitumor effect
*neuroP↑,
Casp3↑, U266 cancer cell line through activation of caspase-3, downregulation of Bcl-2 and Mcl-1L, upregulation of Bax, Bim and Bad
Bcl-2↓,
Mcl-1↓,
BAX↑,
BIM↑,
BAD↑,
AMPK↑, activation of 5'adenosine monophosphate-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC) and decreased phosphorylation of AKT and mTOR were also observed
ACC↑,
DNAdam↑, DNA fragmentation, mitochondrial membrane depolarizatio
MMP↓,
eff↑, fisetin in combination with a citrus flavanone, hesperetin mediated apoptosis by mitochondrial membrane depolarization and caspase-3 act
ROS↑, NCI-H460 human non-small cell lung cancer line, fisetin generated reactive oxygen species (ROS), endoplasmic reticulum (ER) stress
cl‑PARP↑, fisetin treatment resulted in PARP cleavage
Cyt‑c↑, release of cyt. c
Diablo↑, release of cyt. c and Smac/DIABLO from mitochondria,
P53↑, increased p53 protein levels
p65↓, reduced phospho-p65 and Myc oncogene expression
Myc↓,
HSP70/HSPA5↓, fisetin causes inhibition of proliferation by the modulation of heat shock protein 70 (HSP70), HSP27
HSP27↓,
COX2↓, anti-proliferative effects of fisetin through the activation of apoptosis via inhibition of cyclooxygenase-2 (COX-2) and Wnt/EGFR/NF-κB signaling pathways
Wnt↓,
EGFR↓,
NF-kB↓,
TumCCA↑, The anti-proliferative effects of fisetin and hesperetin were shown to be occurred through S, G2/M, and G0/G1 phase arrest in K562 cell progression
CDK2↓, decrease in levels of cyclin D1, cyclin A, Cdk-4 and Cdk-2
CDK4↓,
cycD1↓,
cycA1↓,
P21↑, increase in p21 CIP1/WAF1 levels in HT-29 human colon cancer cell
MMP2↓, fisetin has exhibited tumor inhibitory effects by blocking matrix metalloproteinase-2 (MMP- 2) and MMP-9 at mRNA and protein levels,
MMP9↓,
TumMeta↓, Antimetastasis
MMP1↓, fisetin also inhibited the MMP-14, MMP-1, MMP-3, MMP-7, and MMP-9
MMP3↓,
MMP7↓,
MET↓, promotion of mesenchymal to epithelial transition associated with a decrease in mesenchymal markers i.e. N-cadherin, vimentin, snail and fibronectin and an increase in epithelial markers i.e. E-cadherin
N-cadherin↓,
Vim↓,
Snail↓,
Fibronectin↓,
E-cadherin↑,
uPA↓, fisetin suppressed the expression and activity of urokinase plasminogen activator (uPA)
ChemoSen↑, combination treatment of fisetin and sorafenib reduced the migration and invasion of BRAF-mutated melanoma cells both in in-vitro
EMT↓, inhibited epithelial to mesenchymal transition (EMT) as observed by a decrease in N-cadherin, vimentin and fibronectin and an increase in E-cadherin
Twist↓, inhibited expression of Snail1, Twist1, Slug, ZEB1 and MMP-2 and MMP-9
Zeb1↓,
cFos↓, significant decrease in NF-κB, c-Fos, and c-Jun levels
cJun↓,
EGF↓, Fisetin inhibited epidermal growth factor (EGF)
angioG↓, Antiangiogenesis
VEGF↓, decreased expression of endothelial nitric oxide synthase (eNOS) and VEGF, EGFR, COX-2
eNOS↓,
*NRF2↑, significantly increased nuclear translocation of Nrf2 and antioxidant response element (ARE) luciferase activity, leading to upregulation of HO-1 expression
HO-1↑,
NRF2↓, Fisetin also triggered the suppression of Nrf2
GSTs↓, declined placental type glutathione S-transferase (GST-p) level in the liver of the fisetin- treated rats with hepatocellular carcinoma (HCC)
ATF4↓, Fisetin also rapidly increased the levels of both Nrf2 and ATF4

2849- FIS,    Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin-induced apoptosis in multiple myeloma U266 cells
- in-vitro, Melanoma, U266
TumCD↑, Fisetin elicited the cytotoxicity in U266 cells, manifested as an increased fraction of the cells with sub-G1 content or stained positively with TUNEL labeling
TumCCA↑,
Casp3↑, Fisetin enhanced caspase-3 activation, downregulation of Bcl-2 and Mcl-1L, and upregulation of Bax, Bim and Bad
Bcl-2↓,
Mcl-1↓,
BAX↑,
BIM↑,
BAD↑,
AMPK↑, Fisetin activated AMPK as well as its substrate acetyl-CoA carboxylase (ACC), along with a decreased phosphorylation of AKT and mTOR.
ACC↑,
p‑Akt↓,
p‑mTOR↓,
ROS↑, Fisetin also stimulated generation of ROS in U266 cells
eff↓, Conversely, compound C or N-acetyl-l-cystein blocked fisetin-induced apoptosis

2851- FIS,    Apoptosis induction in breast cancer cell lines by the dietary flavonoid fisetin
- in-vitro, BC, MDA-MB-468 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, BC, T47D - in-vitro, BC, SkBr3 - in-vitro, Nor, NA
tumCV↓, Fisetin exhibited a dose- and time-dependent cytotoxic effect on breast cancer cell lines (e.g., 100 µM fisetin decreased MDA-MB-468 cell viability by 70% at 72h
selectivity↑, In contrast, the viability of normal cells was not substantially affected by concentrations of fisetin that killed breast cancer cells.
TumCCA↑, Fisetin-treated breast cancer cells showed cell cycle arrest (MDA-MB-468 cells arrested at G2/M phase; MDA-MB-231 cells arrested in S-phase) and death by apoptosis
Apoptosis↑,
ROS∅, fisetin did not cause ROS production in MDA-MB-468 or 231 cells, indicating that ROS do not contribute to the cytotoxic effect of fisetin

2852- FIS,    A comprehensive view on the fisetin impact on colorectal cancer in animal models: Focusing on cellular and molecular mechanisms
- Review, CRC, NA
Risk↓, Flavonoids, including fisetin, have been linked to a reduced risk of colorectal cancer (CRC)
P53↑, increased levels of p53 and decreased levels of murine double minute 2, contributing to apoptosis induction
MDM2↓,
COX2↓, fisetin inhibits the cyclooxygenase-2 and wingless-related integration site (Wnt)/epidermal growth factor receptor/nuclear factor kappa B signaling pathways
Wnt↓,
NF-kB↓,
CDK2↓, regulating the activities of cyclin-dependent kinase 2 and cyclin-dependent kinase 4, reducing retinoblastoma protein phosphorylation, decreasing cyclin E levels, and increasing p21 levels
CDK4↓,
p‑RB1↓,
cycE↓,
P21↑,
NRF2↓, Pandey and Trigun revealed that fisetin induces apoptosis in CRC cells by inhibiting autophagy and suppressing Nrf2
ROS↑, Furthermore, fisetin elevated ROS levels and downregulated Nrf2 expression, indicating Nrf2 suppression in fisetin-induced apoptosis in CRC cells.
Casp8↑, fisetin treatment resulted in the upregulation of various molecular pathways, including cleaved caspase-8, Fas ligand, TRAIL, and DR5 levels, in the cancer cells
Fas↑,
TRAIL↑,
DR5↑,
MMP↓, Fisetin also caused mitochondrial membrane depolarization, leading to the release of Smac/DIABLO and cytochrome c
Cyt‑c↑,
selectivity↑, enhanced cellular uptake, and induction of apoptosis in cancer cells
P450↝, Fisetin also affected the activities of cytochrome P450 (CYP450 3A4) and glutathione-S-transferase
GSTs↝,
RadioS↑, fisetin pretreatment heightened the radiosensitivity of p53-mutant HT29 human CRC cells
Inflam↓, Fisetin suppresses inflammation in the colon and CRC
β-catenin/ZEB1↓, fisetin in treating colon cancer, revealing its capability to effectively downregulate β-catenin and COX-2
EGFR↓, fisetin decreased EGFR and NF-κB activation in HT29 cells
TumCCA↑, It induces cell cycle arrest, disrupting the transition from the G1 to the S phase, as well as causing G2/M phase arrest
ChemoSen↑, intervention with fisetin and 5-FU appeared to extend the lifespan of the experimental animals

2853- FIS,    Fisetin Inhibits Cell Proliferation and Induces Apoptosis via JAK/STAT3 Signaling Pathways in Human Thyroid TPC 1 Cancer Cells
- in-vitro, Thyroid, TPC-1
Apoptosis↑, fisetin stimulated apoptosis, which confirmed through reduced cell viability, improved ROS generation, altered MMP and cell cycle phases in TPC-1 cells.
ROS↑,
MMP↓,
TumCCA↑,
Casp3↑, fisetin up-regulated the expression of caspase (3, 8, and 9) expressions in TPC-1 cells.
Casp8↑,
Casp9↑,
JAK1↓, fisetin down-regulated the JAK 1 and STAT3 expression in TPC1 cells
STAT3↓,

2855- FIS,    Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells
- in-vitro, RCC, Caki-1
TumCCA↑, Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation.
cl‑PARP↑,
Apoptosis↑,
Casp↑,
P53↑, fisetin induced p53 protein expression
DR5↑, fisetin-induced DR5 expression.
CHOP↑, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis.
ROS↑,
ER Stress↑, Fisetin induced expression of ER stress-related proteins, including CHOP and activating ATF4
ATF4↑,
XBP-1↑, fisetin also increased the spliced form of the X-box binding protein (XBP)-1 mRNA
eff∅, In our study, NAC did not enhance fisetin-induced apoptosis, and the ROS scavenger, GEE, also had no effect on apoptosi

2843- FIS,    Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential
- Review, Var, NA
NRF2↑, fisetin increased the protein level and accumulation Nrf2 and down regulated the protein levels of Keap1
Keap1↓,
ChemoSen↑, In vitro studies showed that fisetin and quercetin could also act against chemotherapeutic resistance in several cancers
BioAv↓, Fisetin has low aqueous solubility and bioavailability
Cyt‑c↑, release of cytochrome c from mitochondria, caspase-3 and caspase-9 mRNA and protein expression, and B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X (Bax) levels, were found to be regulated in the fisetin-treated cancer cell line
Casp3↑,
Casp9↑,
BAX↑,
tumCV↓, fisetin at 5–80 µM significantly reduced the viability of A431 human epidermoid carcinoma cells by the release of cytochrome c,
Mcl-1↓, reducing the anti-apoptotic protein expression of Bcl-2, Bcl-xL, and Mcl-1 along with elevation of pro-apoptotic protein expression (Bax, Bak, and Bad) and caspase cleavage and poly-ADP-ribose polymerase (PARP) protein
cl‑PARP↑,
IGF-1↓, fisetin promoted caspase-8 and cytochrome c expression, possibly by impeding the aberrant activation of insulin growth factor receptor 1 and Akt
Akt↓,
CDK6↓, fisetin binds with CDK6, which in turn blocks its activity with an inhibitory concentration (IC50) at a concentration of 0.85 μM
TumCCA↑, fisetin is identified as a regulator of cell cycle checkpoints, leading to cell arrest through CDK inhibition in HL60 cells and astrocyte cells over the G0/G1, S, and G2/M phases
P53?, exhibiting elevated levels of p53
cycD1↓, 10–60 μM fisetin concentration, prostate cancer cells PC3, LNCaP, and CWR22Ry1 had decreased cellular viability and decreased levels of D1, D2, and E cyclins and their activating partners CDK2, and CDKs 4/ 6,
cycE↓,
CDK2↓, decreased levels of D1, D2, and E cyclins and their activating partners CDK2, and CDKs 4/ 6,
CDK4↓,
CDK6↓,
MMP2↓, fisetin displayed tumor inhibitory effects by blocking MMP-2 and MMP-9 at mRNA and protein levels in prostate PC-3 cells
MMP9↓,
MMP1↓, Similarly, fisetin can also inhibit MMP-1, MMP-9, MMP-7, MMP-3, and MMP-14 gene expression linked with ECM remodeling in human umbilical vascular endothelial cells (HUVECs) and HT-1080 fibrosarcoma cells [9
MMP7↓,
MMP3↓,
VEGF↓, fisetin in a concentration-dependent manner (10–50 μM concentration) significantly inhibited regular serum, growth-enhancing supplement, and vascular endothelial growth factor (VEGF)
PI3K↓, fisetin inhibited PI3K expression and phosphorylation of Akt
mTOR↓, fisetin treatment activated the apoptotic process through inhibiting both PI3K and mammalian target of rapamycin (mTOR) signaling pathways
COX2↓, fisetin resulted in activation of apoptosis and inhibition of COX-2 and the Wnt/EGFR/NF-kB pathway
Wnt↓,
EGFR↓,
NF-kB↓,
ERK↓, Fisetin is one of the flavonoids that has been found to suppress ERK1/2 signaling in human gastric (SGC7901), hepatic (HepG2), colorectal (Caco-2)
ROS↑, fisetin induced ROS generation and suppressed ERK through its phosphorylation
angioG↓, fisetin-induced anti-angiogenesis led to reduced VEGF and epidermal growth factor receptor (EGFR) expression
TNF-α↓, Fisetin suppressed IL-1β-mediated expression of inducible nitric oxide synthase, nitric oxide, interleukin-6, tumor necrotic factor-α, prostaglandin E2, cyclooxygenase-2 (iNOS, NO, IL-6, TNF-α, PGE2, and COX-2),
PGE2↓,
iNOS↓,
NO↓,
IL6↓,
HSP70/HSPA5↝, fisetin-mediated inhibition of cellular proliferation by HSP70 and HSP27 regulation
HSP27↝,

2825- FIS,    Exploring the molecular targets of dietary flavonoid fisetin in cancer
- Review, Var, NA
*Inflam↓, present in fruits and vegetables such as strawberries, apple, cucumber, persimmon, grape and onion, was shown to possess anti-microbial, anti-inflammatory, anti-oxidant
*antiOx↓, fisetin possesses stronger oxidant inhibitory activity than well-known potent antioxidants like morin and myricetin.
*ERK↑, inducing extracellular signal-regulated kinase1/2 (ERK)/c-myc phosphorylation, nuclear NF-E2-related factor-2 (Nrf2), glutamate cystine ligase and glutathione (GSH) levels
*p‑cMyc↑,
*NRF2↑,
*GSH↑,
*HO-1↑, activate Nrf2 mediated induction of hemeoxygenase-1 (HO-1) important for cell survival
mTOR↓, in our studies on fisetin in non-small lung cancer cells, we found that fisetin acts as a dual inhibitor PI3K/Akt and mTOR pathways
PI3K↓,
Akt↓,
TumCCA↑, fisetin treatment to LNCaP cells resulted in G1-phase arrest accompanied with decrease in cyclins D1, D2 and E and their activating partner CDKs 2, 4 and 6 with induction ofWAF1/p21 and KIP1/p27
cycD1↓,
cycE↓,
CDK2↓,
CDK4↓,
CDK6↓,
P21↑,
p27↑,
JNK↑, fisetin could inhibit the metastatic ability of PC-3 cells by suppressing of PI3 K/Akt and JNK signaling pathways with subsequent repression of matrix metalloproteinase-2 (MMP-2) and MMP-9
MMP2↓,
MMP9↓,
uPA↓, fisetin suppressed protein and mRNA levels of MMP-2 and urokinase-type plasminogen activator (uPA) in an ERK-dependent fashion.
NF-kB↓, decrease in the nuclear levels of NF-B, c-Fos, and c-Jun was noted in fisetin treated cells
cFos↓,
cJun↓,
E-cadherin↑, upregulation of E-cadherin and down-regulation of vimentin and N-cadherin.
Vim↓,
N-cadherin↓,
EMT↓, EMT inhibiting potential of fisetin has been reported in melanoma cells
MMP↓, The shift in mitochondrial membrane potential was accompanied by release of cytochrome c and Smac/DIABLO resulting in activation of the caspase cascade and cleavage of PARP
Cyt‑c↑,
Diablo↑,
Casp↑,
cl‑PARP↑,
P53↑, fisetin with induction of p53 protein
COX2↓, Fisetin down-regulated COX-2 and reduced the secretion of prostaglandin E2 without affecting COX-1 protein expression.
PGE2↓,
HSP70/HSPA5↓, It was shown that the induction of HSF1 target proteins, such as HSP70, HSP27 and BAG3 were inhibited in HCT-116 cells exposed to heat shock at 43 C for 1 h in the presence of fisetin
HSP27↓,
DNAdam↑, DNA fragmentation, an increase in the number of sub-G1 phase cells, mitochondrial membrane depolarization and activation of caspase-9 and caspase-3.
Casp3↑,
Casp9↑,
ROS↑, This was associated with production of intracellular ROS
AMPK↑, Fisetin induced AMPK signaling
NO↑, fisetin induced cytotoxicity and showed that fisetin induced apoptosis of leukemia cells through generation of NO and elevated Ca2+ activating the caspase
Ca+2↑,
mTORC1↓, Fisetin was shown to inhibit the mTORC1 pathway and its downstream components including p70S6 K, eIF4B and eEF2 K.
p70S6↓,
ROS↓, Others have also noted a similar decrease in ROS with fisetin treatment.
ER Stress↑, Induction of ER stress upon fisetin treatment, evident as early as 6 h, and associated with up-regulation of IRE1, XBP1s, ATF4 and GRP78, was followed by autophagy which was not sustained
IRE1↑,
ATF4↑,
GRP78/BiP↑,
eff↑, Combination of fisetin and the BRAF inhibitor sorafenib was found to be extremely effective in inhibiting the growth of BRAF-mutated human melanoma cells
eff↑, synergistic effect of fisetin and sorafenib was observed in human cervical cancer HeLa cells,
eff↑, Similarly, fisetin in combination with hesperetin induced apoptosis
RadioS↑, pretreatment with fisetin enhanced the radio-sensitivity of p53 mutant HT-29 cancer cells,
ChemoSen↑, potential of fisetin in enhancing cisplatin-induced cytotoxicity in various cancer models
Half-Life↝, intraperitoneal (ip) dose of 223 mg/kg body weight the maximum plasma concentration (2.53 ug/ml) of fisetin was reached at 15 min which started to decline with a first rapid alpha half-life of 0.09 h and a longer half-life of 3.12 h.

2827- FIS,    The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment
- Review, Var, NA
*antiOx↑, effective antioxidant, anti-inflammatory
*Inflam↓,
neuroP↑, neuro-protective, anti-diabetic, hepato-protective and reno-protective potential.
hepatoP↑,
RenoP↑,
cycD1↓, Figure 3
TumCCA↑,
MMPs↓,
VEGF↓,
MAPK↓,
NF-kB↓,
angioG↓,
Beclin-1↑,
LC3s↑,
ATG5↑,
Bcl-2↓,
BAX↑,
Casp↑,
TNF-α↓,
Half-Life↓, Fisetin was given at an effective dosage of 223 mg/kilogram intraperitoneally in mice. The plasma concentration declined biophysically, with a rapid half-life of 0.09 h and a terminal half-life of 3.1 h,
MMP↓, Fisetin powerfully improved apoptotic cells and caused the depolarization of the mitochondrial membrane.
mt-ROS↑, Fisetin played a role in the induction of apoptosis, independently of p53, and increased mitochondrial ROS generation.
cl‑PARP↑, fisetin-induced sub-G1 population as well as PARP cleavage.
CDK2↓, Moreover, the activities of cyclin-dependent kinases (CDK) 2 as well as CDK4 were decreased by fisetin and also inhibited CDK4 activity in a cell-free system, demonstrating that it might directly inhibit the activity of CDK4
CDK4↓,
Cyt‑c↑, Moreover, release of cytochrome c and Smac/Diablo was induced by fisetin
Diablo↑,
DR5↑, Fisetin caused an increase in the protein levels of cleaved caspase-8, DR5, Fas ligand, and TNF-related apoptosis-inducing ligand
Fas↑,
PCNA↓, Fisetin decreased proliferation-related proteins such as PCNA, Ki67 and phosphorylated histone H3 (p-H3) and decreased the expression of cell growth
Ki-67↓,
p‑H3↓,
chemoP↑, Paclitaxel treatment only showed more toxicity to normal cells than the combination of flavonoids with paclitaxel, suggesting that fisetin might bring some safety against paclitaxel-facilitated cytotoxicity.
Ca+2↑, Fisetin encouraged apoptotic cell death via increased ROS and Ca2+, while it increased caspase-8, -9 and -3 activities and reduced the mitochondrial membrane potential in HSC3 cells.
Dose↝, After fisetin treatment at 40 µM, invasion was reduced by 87.2% and 92.4%, whereas after fisetin treatment at 20 µM, invasion was decreased by 52.4% and 59.4% in SiHa and CaSki cells, respectively
CDC25↓, This study proposes that fisetin caused the arrest of the G2/M cell cycle via deactivating Cdc25c as well Cdc2 via the activation of Chk1, 2 and ATM
CDC2↓,
CHK1↑,
Chk2↑,
ATM↑,
PCK1↓, fisetin decreases the levels of SOS-1, pEGFR, GRB2, PKC, Ras, p-p-38, p-ERK1/2, p-JNK, VEGF, FAK, PI3K, RhoA, p-AKT, uPA, NF-ĸB, MMP-7,-9 and -13, whereas it increases GSK3β as well as E-cadherin in U-2 OS
RAS↓,
p‑p38↓,
Rho↓,
uPA↓,
MMP7↓,
MMP13↓,
GSK‐3β↑,
E-cadherin↑,
survivin↓, whereas those of survivin and BCL-2 were reduced in T98G cells
VEGFR2↓, Fisetin inhibited the VEGFR expression in Y79 cells as well as the angiogenesis of a tumor.
IAP2↓, The downregulation of cIAP-2 by fisetin
STAT3↓, fisetin induced apoptosis in TPC-1 cells via the initiation of oxidative damage and enhanced caspases expression by downregulating STAT3 and JAK 1 signaling
JAK1↓,
mTORC1↓, Fisetin acts as a dual inhibitor of mTORC1/2 signaling,
mTORC2↓,
NRF2↑, Moreover, In JC cells, the Nrf2 expression was gradually increased by fisetin from 8 h to 24 h

2828- FIS,    Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review
- Review, Var, NA
*neuroP↑, As a hydrophobic agent, FIS readily penetrates cell membranes and accumulates in cells to exert neuroprotective, neurotrophic and antioxidant effects
*antiOx↑,
*Inflam↓, FIS treatment may include alleviating inflammation, cell apoptosis and oxidative stress
RenoP↑, alleviates cell apoptosis and inflammation in acute kidney injury
COX2↓, FIS induces apoptosis in various tumor cells by, for example, inhibiting cyclooxygenase-2, inhibiting the Wnt/EGFR/NF-κB pathway, activating the caspase-3 cascade
Wnt↓,
EGFR↓,
NF-kB↓,
Casp3↑,
Ca+2↑, activating the caspase-3 and Ca2+ dependent endonuclease, and activating the caspase-8/caspase-3 dependent pathway via ERK1/2.
Casp8↑,
TumCCA↑, FIS controls the cell cycle and inhibits cyclin-dependent kinases (CDKs) in human cancer cell lines,
CDK1↓,
PI3K↓, by inhibition of PI3K/Akt/mTOR signaling [20], mitogen-activated protein kinases (MAPK) [21], and nuclear transcription factor (NF-κB)
Akt↓,
mTOR↓,
MAPK↓,
*P53↓, FIS inhibits aging by reducing p53, p21 and p16 expression in mouse and human tissues
*P21↓,
*p16↓,
mTORC1↓, FIS induces autophagic cell death by inhibiting both the mTORC1 and mTORC2 pathways
mTORC2↓,
P53↑, FIS significantly increases the expression of p53 and p21 proteins and lowers the levels of cyclin D1 [27,28], cyclin A, CDK4 and CDK2, thus contributing to cell-cycle arrest.
P21↑,
cycD1↓,
cycA1↓,
CDK2↓,
CDK4↓,
BAX↑, FIS also increases Bax [27,28] and Bak [27] protein expression, but reduces the levels of Bcl-2 [27,28], Bcl-xL [27] and PCNA [28], and then starts the mitochondrial apoptotic pathway.
Bcl-2↓,
PCNA↓,
HER2/EBBR2↓, FIS reduces HER2 tyrosine phosphorylation in a dose-dependent manner and aids in proteasomal degradation of HER2 rather than lysosomal degradation
Cyt‑c↑, FIS cells causes destabilization of the mitochondrial membrane and an increase in cytochrome c levels, which is consistent with the loss of mitochondrial membrane integrity.
MMP↓,
cl‑Casp9↑,
MMP2↓, FIS reduces the enzymatic activity of both MMP-2 and MMP-9.
MMP9↓,
cl‑PARP↑, cell membrane, mitochondrial depolarization, activation of caspase-7, -8 and -9, and cleavage of PARP
uPA↓, interestingly, the promoter activity of the uPA gene is suppressed by FIS
DR4↑, induces upregulation of DR4 and DR5 death receptor expression in a dose-dependent manner
DR5↑,
ROS↓, FIS induces an increase in intracellular Ca2+ but reduces the production of ROS in WEHI-3 cells (myelomonocytic leukemia)
AIF↑, It also increases the levels of caspase-3 and AIF mRNA, but also increases necrosis markers including RIP3 and PARP1
CDC25↓, FIS reduces the expression of cdc25a, but increases the expression of p-p53, Chk1, p21 and p27, which may lead to a G0/G1 arrest.
Dose↑, FIS in concentrations from 0 to 10 μM does not affect cell viability; however, its use at concentrations of 20–40 μM significantly reduces the viability of lung cancer cells
CHOP↑, CaKi : FIS induces upregulation of CHOP expression and ROS production
ROS↑, NCI-H460 :FIS increases the ER stress signaling FIS increases the level of mitochondrial ROS FIS induces mitochondrial Ca2+ overloading and ER stress FIS induced ER stress-mediated cell death via activation of the MAPK pathway
cMyc↓, FIS influences proliferation related genes such as cyclin D1, c-myc and cyclooxygenase (COX)-2 by downregulating them.
cardioP↑, cardioprotective activity

2829- FIS,    Fisetin: An anticancer perspective
- Review, Var, NA
TumCP↓, Being a potent anticancer agent, fisetin has been used to inhibit stages in the cancer cells (proliferation, invasion), prevent cell cycle progression, inhibit cell growth, induce apoptosis, cause polymerase (PARP) cleavage
TumCI↓,
TumCCA↑,
TumCG↓,
Apoptosis↑,
cl‑PARP↑,
PKCδ↓, fisetin also suppresses the activation of the PKCα/ROS/ERK1/2 and p38 MAPK signaling pathways, reduces the NF‐κB activation, and down‐regulates the level of the oncoprotein securin
ROS↓,
ERK↓,
NF-kB↓,
survivin↓,
ROS↑, In human multiple myeloma U266 cells, fisetin stimulated the production of free radical species that led to apoptosis
PI3K↓, Multiple studies also authenticated the anticancer role of fisetin through various signaling pathways such as blocking of mammalian target of rapamycin (PI3K/Akt/mTOR)
Akt↓,
mTOR↓,
MAPK↓, phosphatidylinositol‐3‐kinase/protein kinase B, mitogen‐activated protein kinases (MAPK)‐dependent nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB), and p38, respectively,
p38↓,
HER2/EBBR2↓, (HER2)/neu‐overexpressing breast cancer cell lines. Fisetin caused induction through inactivating the receptor, inducing the degradation of the proteasomes, reducing its half‐life
EMT↓, In addition, mutation of epithelial‐to‐mesenchymal transition (EMT)
PTEN↑, up‐regulation of expression of PTEN mRNA and protein were reported after fisetin treatment
HO-1↑, In breast cancer cells (4T1 and JC cells), fisetin increased HO‐1 mRNA and protein expressions, elevated Nrf2 expression
NRF2↑,
MMP2↓, fisetin reduced MMP‐2 and MMP‐9 enzyme activity and gene expression for both mRNA levels and protein
MMP9↓,
MMP↓, fisetin treatment further led to permeabilization of mitochondrial membrane, activation of caspase‐8 and caspase‐9, as well as the cleavage of poly(ADP‐ribose) polymerase 1
Casp8↑,
Casp9↑,
TRAILR↑, enhanced the levels of TRAIL‐R1
Cyt‑c↑, mitochondrial releasing of cytochrome c into cytosol, up‐regulation and down‐regulation of X‐linked inhibitor of apoptosis protein
XIAP↓,
P53↑, fisetin also enhanced the protein p53 levels
CDK2↓, lowered cell number, the activities of CDK‐2,4)
CDK4↓,
CDC25↓, it also decreased cell division cycle protein levels (CDC)2 and CDC25C, and CDC2 activity (Lu et al., 2005)
CDC2↓,
VEGF↓, down‐regulating the expressions of p‐ERK1/2, vascular endothelial growth factor receptor 1(VEGFR1), p38, and pJNK, respectively
DNAdam↑, Fisetin (80 microM) showed dose‐dependently caused DNA fragmentation, induced cellular swelling and apoptotic death, and showed characteristics of apoptosis.
TET1↓, lowered the TET1 expression levels
CHOP↑, caused up‐regulation of (C/EBP) homologous protein (CHOP) expression and reactive oxygen species production,
CD44↓, down‐regulation of CD44 and CD133 markers
CD133↓,
uPA↓, down‐regulation of levels of matrix metalloproteinase‐2 (MMP‐2), urokinase‐type plasminogen activator (uPA),

2832- FIS,    Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies
- Review, Var, NA
MMP↓, fraction of cells with reduced mitochondrial membrane potential also increased, indicating that fisetin-induced apoptosis also destroys mitochondria.
mtDam↑,
Cyt‑c↑, Cytochrome c and Smac/DIABLO levels are also released when the mitochondrial membrane potential changes, and this results in the activation of the caspase cascade and the cleavage of poly [ADP-ribose] polymerase (PARP)
Diablo↑,
Casp↑,
cl‑PARP↑,
Bak↑, Fisetin induced apoptosis in HCT-116 human colon cancer cells by upregulating proapoptotic proteins Bak and BIM and downregulating antiapoptotic proteins B cell lymphoma (BCL)-XL and -2.
BIM↑,
Bcl-xL↓,
Bcl-2↓,
P53↑, fisetin through the activation of p53
ROS↑, over generation of ROS, which is also directly initiated by fisetin, the stimulation of AMPK
AMPK↑,
Casp9↑, activating caspase-9 collectively, then activating caspase-3, leading to apopotosis
Casp3↑,
BID↑, Bid, AIF and the increase of the ratio of Bax to Bcl-2, causing the activation of caspase 3–9
AIF↑,
Akt↓, The inhibition of the Akt/mTOR/MAPK/
mTOR↓,
MAPK↓,
Wnt↓, Fisetin has been shown to degrade the Wnt/β/β-catenin signal
β-catenin/ZEB1↓,
TumCCA↑, fisetin triggered G1 phase arrest in LNCaP cells by activating WAF1/p21 and kip1/p27, followed by a reduction in cyclin D1, D2, and E as well as CDKs 2, 4, and 6
P21↑,
p27↑,
cycD1↓,
cycE↓,
CDK2↓,
CDK4↓,
CDK6↓,
TumMeta↓, reduces PC-3 cells' capacity for metastasis
uPA↓, fisetin decreased MMP-2 protein, messenger RNA (mRNA), and uPA levels through an ERK-dependent route
E-cadherin↑, Fisetin can upregulate the epithelial marker E-cadherin, downregulate the mesenchymal marker vimentin, and drastically lower the EMT regulator twist protein level at noncytotoxic dosages, studies have revealed.
Vim↓,
EMT↓,
Twist↓,
DNAdam↑, Fisetin induces apoptosis in the human nonsmall lung cancer cell line NCI-H460, which causes DNA breakage, the growth of sub-G1 cells, depolarization of the mitochondrial membrane, and activation of caspases 9, 3, which are involved in prod of iROS
ROS↓, fisetin therapy has been linked to a reduction in ROS, according to other research.
COX2↓, Fisetin lowered the expression of COX-1 protein, downregulated COX-2, and decreased PGE2 production
PGE2↓,
HSF1↓, Fisetin is a strong HSF1 inhibitor that blocks HSF1 from binding to the hsp70 gene promoter.
cFos↓, NF-κB, c-Fos, c-Jun, and AP-1 nuclear levels were also lowered by fisetin treatment
cJun↓,
AP-1↓,
Mcl-1↓, inhibition of Bcl-2 and Mcl-1 all contribute to an increase in apoptosis
NF-kB↓, Fisetin's ability to prevent NF-κB activation in LNCaP cells
IRE1↑, fisetin (20–80 µM) was accompanied by brief autophagy and the production of ER stress, which was shown by elevated levels of IRE1 α, XBP1s, ATF4, and GRP78 in A375 and 451Lu cells
ER Stress↑,
ATF4↑,
GRP78/BiP↑,
MMP2↓, lowering MMP-2 and MMP-9 proteins in melanoma cell xenografts
MMP9↓,
TCF-4↓, fisetin therapy reduced levels of β-catenin, TCF-4, cyclin D1, and MMP-7,
MMP7↓,
RadioS↑, fisetin treatment could radiosensitize human colorectal cancer cells that are resistant to radiotherapy.
TOP1↓, fisetin blocks DNA topoisomerases I and II in leukemia cells.
TOP2↓,

2839- FIS,    Dietary flavonoid fisetin for cancer prevention and treatment
- Review, Var, NA
DNAdam↑, Fisetin induced DNA fragmentation, ROS generation, and apoptosis in NCI-H460 cells via a reduction in Bcl-2 and increase in Bax expression
ROS↑,
Apoptosis↑,
Bcl-2↓,
BAX↑,
cl‑Casp9↑, Fisetin treatment increased cleavage of caspase-9 and caspase-3 thereby increasing caspase-3 activation
cl‑Casp3↑,
Cyt‑c↑, leading to cytochrome-c release
lipid-P↓, Fisetin (25 mg/kg body weight) decreased histological lesions and levels of lipid peroxidation and modulated the enzymatic and nonenzymatic anti-oxidants in B(a)P-treated Swiss Albino mice
TumCG↓, We observed that fisetin treatment (5–20 μM) inhibits cell growth and colony formation in A549 NSC lung cancer cells.
TumCA↓, Another study showed that fisetin inhibits adhesion, migration, and invasion in A549 lung cancer cells by downregulating uPA, ERK1/2, and MMP-2
TumCMig↓,
TumCI↓,
uPA↓,
ERK↓,
MMP9↓,
NF-kB↓, Treatment with fisetin also decreased the nuclear levels of NF-kB, c-Fos, c-Jun, and AP-1 and inhibited NF-kB binding.
cFos↓,
cJun↓,
AP-1↓,
TumCCA↑, Our laboratory has previously shown that treatment of LNCaP cells with fisetin caused inhibition of PCa by G1-phase cell cycle arrest
AR↓, inhibited androgen signaling and tumor growth in athymic nude mice
mTORC1↓, induced autophagic cell death in PCa cells through suppression of mTORC1 and mTORC2
mTORC2↓,
TSC2↑, activated the mTOR repressor TSC2, commonly associated with inhibition of Akt and activation of AMPK
EGF↓, Fisetin also inhibits EGF and TGF-β induced YB-1 phosphorylation and EMT in PCa cells
TGF-β↓,
EMT↓, Fisetin also inhibits EGF and TGF-β induced YB-1 phosphorylation and EMT in PCa cells
P-gp↓, decrease the P-gp protein in multidrug resistant NCI/ADR-RES cells.
PI3K↓, Fisetin also inhibited the PI3K/AKT/NFkB signaling
Akt↓,
mTOR↓, Fisetin inhibited melanoma progression in a 3D melanoma skin model with downregulation of mTOR, Akt, and upregulation of TSC
eff↑, combinational treatment study of melatonin and fisetin demonstrated enhanced antitumor activity of fisetin
ROS↓, Fisetin inhibited ROS and augmented NO generation in A375 melanoma cells
ER Stress↑, induction of ER stress evidenced by increased IRE1α, XBP1s, ATF4, and GRP78 levels in A375 and 451Lu cells.
IRE1↑,
ATF4↑,
GRP78/BiP↑,
ChemoSen↑, combination of fisetin with sorafenib effectively inhibited EMT and augmented the anti-metastatic potential of sorafenib by reducing MMP-2 and MMP-9 proteins in melanoma cell xenografts
CDK2↓, Fisetin (0–60 μM) was shown to inhibit activity of CDKs dose-dependently leading to cell cycle arrest in HT-29 human colon cancer cells
CDK4↓, Fisetin treatment decreased activities of CDK2 and CDK4 via decreased levels of cyclin-E, cyclin-D1 and increase in p21 (CIP1/WAF1) levels.
cycE↓,
cycD1↓,
P21↑,
COX2↓, fisetin (30–120 μM) induces apoptosis in colon cancer cells by inhibiting COX-2 and Wnt/EGFR/NF-kB -signaling pathways
Wnt↓,
EGFR↓,
β-catenin/ZEB1↓, Fisetin treatment inhibited Wnt/EGFR/NF-kB signaling via downregulation of β-catenin, TCF-4, cyclin D1, and MMP-7
TCF-4↓,
MMP7↓,
RadioS↑, fisetin treatment was found to radiosensitize human colorectal cancer cells which are resistant to radiotherapy
eff↑, Combined treatment of fisetin with NAC increased cleaved caspase-3, PARP, reduced mitochondrial membrane potential with induction of caspase-9 in COLO25 cells

2842- FIS,    Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells
- in-vitro, GC, AGS
TumCCA↑, Fisetin (25-100 μM) caused significant decrease in the levels of G1 phase cyclins and CDKs, and increased the levels of p53 and its S15 phosphorylation in gastric cancer cells.
CDK2↓,
P53↑,
selectivity↑, observed that growth suppression and death of non-neoplastic human intestinal FHs74int cells were minimally affected by fisetin
MMP↓, Fisetin strongly increased apoptotic cells and showed mitochondrial membrane depolarization in gastric cancer cells
DNAdam↑, DNA damage was observed as early as 3 h after fisetin treatment which was accompanied with gamma-H2A.X(S139) phosphorylation and cleavage of PARP
cl‑PARP↑,
mt-ROS↑, showed an increase in mitochondrial ROS generation in time- and dose-dependent fashion
eff↓, Pre-treatment with N-acetyl cysteine (NAC) inhibited ROS generation and also caused protection from fisetin-induced DNA damage
survivin↓, We observed a decrease in the levels of survivin by fisetin in gastric cancer cells which further strengthens our results that fisetin decreases antiapoptotic proteins to promote apoptosis.

3372- QC,  FIS,  KaempF,    Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol, and Quercetin on Head and Neck Cancers
- Review, HNSCC, NA
ROCK1↑, quercetin affects the level of RhoA and NF-κB proteins in SAS cells, and stimulates the expression of RhoA, ROCK1, and NF-κB in SAS cells [53].
TumCCA↓, inhibition of the cell cycle;
HSPs↓, inhibition of heat shock proteins;
RAS↓, inhibition of Ras protein expression.
ROS↑, fisetin induces production of reactive oxygen species (ROS), increases Ca2+ release, and decreases the mitochondrial membrane potential (Ψm) in head and neck neoplastic cells.
Ca+2↑,
MMP↓,
Cyt‑c↑, quercetin increases the expression level of cytochrome c, apoptosis inducing factor and endonuclease G
Endon↑,
MMP9↓, quercetin inhibits MMP-9 and MMP-2 expression and reduces levels of the following proteins: MMP-2, -7, -9 [49,53] and -10
MMP2↓,
MMP7↓,
MMP-10↓,
VEGF↓, as well as VEGF, NF-κB p65, iNOS, COX-2, and uPA, PI3K, IKB-α, IKB-α/β, p-IKKα/β, FAK, SOS1, GRB2, MEKK3 and MEKK7, ERK1/2, p-ERK1/2, JNK1/2, p38, p-p38, c-JUN, and pc-JUN
NF-kB↓,
p65↓,
iNOS↓,
COX2↓,
uPA↓,
PI3K↓,
FAK↓,
MEK↓,
ERK↓,
JNK↓,
p38↓,
cJun↓,
FOXO3↑, Quercetin causes an increase in the level of FOXO1 protein both in a dose- and time-dependent way; however, it does not affect changes in expression of FOXO3a


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 15

Results for Effect on Cancer/Diseased Cells:
ACC↑,2,   AIF↑,2,   Akt↓,7,   p‑Akt↓,1,   AMPK↑,4,   angioG↓,3,   AP-1↓,2,   Apoptosis↑,5,   AR↓,1,   ATF4↓,1,   ATF4↑,4,   ATG5↑,1,   ATM↑,1,   BAD↑,2,   Bak↑,1,   BAX↑,6,   Bcl-2↓,6,   Bcl-xL↓,1,   Beclin-1↑,1,   BID↑,1,   BIM↑,3,   BioAv↓,1,   Ca+2↑,4,   cardioP↑,1,   Casp↑,4,   Casp3↑,7,   cl‑Casp3↑,1,   Casp8↑,4,   Casp9↑,5,   cl‑Casp9↑,2,   CD133↓,1,   CD44↓,1,   CDC2↓,2,   CDC25↓,3,   CDK1↓,1,   CDK2↓,10,   CDK4↓,9,   CDK6↓,4,   cFos↓,4,   chemoP↑,1,   ChemoSen↑,5,   CHK1↑,1,   Chk2↑,1,   CHOP↑,3,   cJun↓,5,   cMyc↓,1,   COX2↓,8,   cycA1↓,2,   cycD1↓,7,   cycE↓,5,   Cyt‑c↑,10,   Diablo↑,4,   DNAdam↑,6,   Dose↑,1,   Dose↝,1,   DR4↑,1,   DR5↑,4,   E-cadherin↑,4,   eff↓,2,   eff↑,6,   eff∅,1,   EGF↓,2,   EGFR↓,5,   EMT↓,5,   Endon↑,1,   eNOS↓,1,   ER Stress↑,4,   ERK↓,4,   FAK↓,1,   Fas↑,2,   Fibronectin↓,1,   FOXO3↑,1,   GRP78/BiP↑,3,   GSK‐3β↑,1,   GSTs↓,1,   GSTs↝,1,   p‑H3↓,1,   Half-Life↓,1,   Half-Life↝,1,   hepatoP↑,1,   HER2/EBBR2↓,2,   HO-1↑,2,   HSF1↓,1,   HSP27↓,2,   HSP27↝,1,   HSP70/HSPA5↓,2,   HSP70/HSPA5↝,1,   HSPs↓,1,   IAP2↓,1,   IGF-1↓,1,   IL6↓,1,   Inflam↓,1,   iNOS↓,2,   IRE1↑,3,   JAK1↓,2,   JNK↓,1,   JNK↑,1,   Keap1↓,1,   Ki-67↓,1,   LC3s↑,1,   lipid-P↓,1,   MAPK↓,4,   Mcl-1↓,4,   MDM2↓,1,   MEK↓,1,   MET↓,1,   MMP↓,10,   MMP-10↓,1,   MMP1↓,2,   MMP13↓,1,   MMP2↓,7,   MMP3↓,2,   MMP7↓,6,   MMP9↓,8,   MMPs↓,1,   mtDam↑,1,   mTOR↓,7,   p‑mTOR↓,1,   mTORC1↓,4,   mTORC2↓,3,   Myc↓,1,   N-cadherin↓,2,   neuroP↑,1,   NF-kB↓,10,   NO↓,1,   NO↑,1,   NRF2↓,2,   NRF2↑,3,   P-gp↓,1,   P21↑,6,   p27↑,2,   p38↓,3,   p‑p38↓,1,   P450↝,1,   P53?,1,   P53↑,8,   p65↓,2,   p70S6↓,1,   cl‑PARP↑,9,   PCK1↓,1,   PCNA↓,2,   PGE2↓,3,   PI3K↓,7,   PKCδ↓,1,   PTEN↑,1,   RadioS↑,4,   RAS↓,2,   p‑RB1↓,1,   RenoP↑,2,   Rho↓,1,   Risk↓,1,   ROCK1↑,1,   ROS↓,5,   ROS↑,12,   ROS∅,1,   mt-ROS↑,2,   selectivity↑,3,   Snail↓,1,   STAT3↓,2,   survivin↓,3,   TCF-4↓,2,   TET1↓,1,   TGF-β↓,1,   TNF-α↓,2,   TOP1↓,1,   TOP2↓,1,   TRAIL↑,1,   TRAILR↑,1,   TSC2↑,1,   TumCA↓,1,   TumCCA↓,1,   TumCCA↑,14,   TumCD↑,1,   TumCG↓,2,   TumCI↓,2,   TumCMig↓,1,   TumCP↓,1,   tumCV↓,2,   TumMeta↓,2,   Twist↓,2,   uPA↓,8,   VEGF↓,5,   VEGFR2↓,1,   Vim↓,3,   Wnt↓,6,   XBP-1↑,1,   XIAP↓,1,   Zeb1↓,1,   β-catenin/ZEB1↓,3,  
Total Targets: 189

Results for Effect on Normal Cells:
antiOx↓,1,   antiOx↑,3,   p‑cMyc↑,1,   ERK↑,1,   GSH↑,1,   HO-1↑,1,   Inflam↓,3,   neuroP↑,2,   NRF2↑,2,   p16↓,1,   P21↓,1,   P53↓,1,  
Total Targets: 12

Scientific Paper Hit Count for: TumCCA, Tumor cell cycle arrest
15 Fisetin
1 Quercetin
1 Kaempferol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:78  Target#:322  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page