condition found tbRes List
FIS, Fisetin: Click to Expand ⟱
Features:
Fisetin is a plant based flavonoid. Found in strawberries(160ug/g), apples, persimmons, onions, cucumbers, grapes.

-Note half-life 3-4hrs
- Oral BioAv low (40-50%)
Pathways:
- induce ROS production in cancer cells, but also known to reduce it.
Also a claim Fisetin-Induced Reactive Oxygen Species Production Has No Effect on Apoptosis in RCC cells
Also one claim (NAC 10-20mM levels) that NAC enhances ROS/apoptosis
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Does not appear to lower antioxidants in cancer cells
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits HIF-1α↓, cMyc, LDH↓, GRP78↑,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells : CD133↓, β-catenin↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


cMyc, cellular-MYC oncogene: Click to Expand ⟱
Source:
Type: oncogene
The MYC proto-oncogenes are among the most commonly activated proteins in human cancer. The oncogene c-myc, which is frequently over-expressed in cancer cells, is involved in the transactivation of most of the glycolytic enzymes including lactate dehydrogenase A (LDHA) and the glucose transporter GLUT1 [51,52]. Thus, c-myc activation is a likely candidate to promote the enhanced glucose uptake and lactate release in the proliferating cancer cell. The c-Myc oncogene is a ‘master regulator’ of both cellular growth and metabolism in transformed cells.
-C-myc is a common oncogene that enhances aerobic glycolysis in the cancer cells by transcriptionally activating GLUT1, HK2, PKM2 and LDH-A

Inhibitors (downregulate):
Curcumin
Resveratrol: downregulate c-Myc expression.
Epigallocatechin Gallate (EGCG)
Quercetin
Berberine: decrease c-Myc expression and repress its transcriptional activity.


Scientific Papers found: Click to Expand⟱
2825- FIS,    Exploring the molecular targets of dietary flavonoid fisetin in cancer
- Review, Var, NA
*Inflam↓, present in fruits and vegetables such as strawberries, apple, cucumber, persimmon, grape and onion, was shown to possess anti-microbial, anti-inflammatory, anti-oxidant
*antiOx↓, fisetin possesses stronger oxidant inhibitory activity than well-known potent antioxidants like morin and myricetin.
*ERK↑, inducing extracellular signal-regulated kinase1/2 (ERK)/c-myc phosphorylation, nuclear NF-E2-related factor-2 (Nrf2), glutamate cystine ligase and glutathione (GSH) levels
*p‑cMyc↑,
*NRF2↑,
*GSH↑,
*HO-1↑, activate Nrf2 mediated induction of hemeoxygenase-1 (HO-1) important for cell survival
mTOR↓, in our studies on fisetin in non-small lung cancer cells, we found that fisetin acts as a dual inhibitor PI3K/Akt and mTOR pathways
PI3K↓,
Akt↓,
TumCCA↑, fisetin treatment to LNCaP cells resulted in G1-phase arrest accompanied with decrease in cyclins D1, D2 and E and their activating partner CDKs 2, 4 and 6 with induction ofWAF1/p21 and KIP1/p27
cycD1↓,
cycE↓,
CDK2↓,
CDK4↓,
CDK6↓,
P21↑,
p27↑,
JNK↑, fisetin could inhibit the metastatic ability of PC-3 cells by suppressing of PI3 K/Akt and JNK signaling pathways with subsequent repression of matrix metalloproteinase-2 (MMP-2) and MMP-9
MMP2↓,
MMP9↓,
uPA↓, fisetin suppressed protein and mRNA levels of MMP-2 and urokinase-type plasminogen activator (uPA) in an ERK-dependent fashion.
NF-kB↓, decrease in the nuclear levels of NF-B, c-Fos, and c-Jun was noted in fisetin treated cells
cFos↓,
cJun↓,
E-cadherin↑, upregulation of E-cadherin and down-regulation of vimentin and N-cadherin.
Vim↓,
N-cadherin↓,
EMT↓, EMT inhibiting potential of fisetin has been reported in melanoma cells
MMP↓, The shift in mitochondrial membrane potential was accompanied by release of cytochrome c and Smac/DIABLO resulting in activation of the caspase cascade and cleavage of PARP
Cyt‑c↑,
Diablo↑,
Casp↑,
cl‑PARP↑,
P53↑, fisetin with induction of p53 protein
COX2↓, Fisetin down-regulated COX-2 and reduced the secretion of prostaglandin E2 without affecting COX-1 protein expression.
PGE2↓,
HSP70/HSPA5↓, It was shown that the induction of HSF1 target proteins, such as HSP70, HSP27 and BAG3 were inhibited in HCT-116 cells exposed to heat shock at 43 C for 1 h in the presence of fisetin
HSP27↓,
DNAdam↑, DNA fragmentation, an increase in the number of sub-G1 phase cells, mitochondrial membrane depolarization and activation of caspase-9 and caspase-3.
Casp3↑,
Casp9↑,
ROS↑, This was associated with production of intracellular ROS
AMPK↑, Fisetin induced AMPK signaling
NO↑, fisetin induced cytotoxicity and showed that fisetin induced apoptosis of leukemia cells through generation of NO and elevated Ca2+ activating the caspase
Ca+2↑,
mTORC1↓, Fisetin was shown to inhibit the mTORC1 pathway and its downstream components including p70S6 K, eIF4B and eEF2 K.
p70S6↓,
ROS↓, Others have also noted a similar decrease in ROS with fisetin treatment.
ER Stress↑, Induction of ER stress upon fisetin treatment, evident as early as 6 h, and associated with up-regulation of IRE1, XBP1s, ATF4 and GRP78, was followed by autophagy which was not sustained
IRE1↑,
ATF4↑,
GRP78/BiP↑,
eff↑, Combination of fisetin and the BRAF inhibitor sorafenib was found to be extremely effective in inhibiting the growth of BRAF-mutated human melanoma cells
eff↑, synergistic effect of fisetin and sorafenib was observed in human cervical cancer HeLa cells,
eff↑, Similarly, fisetin in combination with hesperetin induced apoptosis
RadioS↑, pretreatment with fisetin enhanced the radio-sensitivity of p53 mutant HT-29 cancer cells,
ChemoSen↑, potential of fisetin in enhancing cisplatin-induced cytotoxicity in various cancer models
Half-Life↝, intraperitoneal (ip) dose of 223 mg/kg body weight the maximum plasma concentration (2.53 ug/ml) of fisetin was reached at 15 min which started to decline with a first rapid alpha half-life of 0.09 h and a longer half-life of 3.12 h.

2828- FIS,    Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review
- Review, Var, NA
*neuroP↑, As a hydrophobic agent, FIS readily penetrates cell membranes and accumulates in cells to exert neuroprotective, neurotrophic and antioxidant effects
*antiOx↑,
*Inflam↓, FIS treatment may include alleviating inflammation, cell apoptosis and oxidative stress
RenoP↑, alleviates cell apoptosis and inflammation in acute kidney injury
COX2↓, FIS induces apoptosis in various tumor cells by, for example, inhibiting cyclooxygenase-2, inhibiting the Wnt/EGFR/NF-κB pathway, activating the caspase-3 cascade
Wnt↓,
EGFR↓,
NF-kB↓,
Casp3↑,
Ca+2↑, activating the caspase-3 and Ca2+ dependent endonuclease, and activating the caspase-8/caspase-3 dependent pathway via ERK1/2.
Casp8↑,
TumCCA↑, FIS controls the cell cycle and inhibits cyclin-dependent kinases (CDKs) in human cancer cell lines,
CDK1↓,
PI3K↓, by inhibition of PI3K/Akt/mTOR signaling [20], mitogen-activated protein kinases (MAPK) [21], and nuclear transcription factor (NF-κB)
Akt↓,
mTOR↓,
MAPK↓,
*P53↓, FIS inhibits aging by reducing p53, p21 and p16 expression in mouse and human tissues
*P21↓,
*p16↓,
mTORC1↓, FIS induces autophagic cell death by inhibiting both the mTORC1 and mTORC2 pathways
mTORC2↓,
P53↑, FIS significantly increases the expression of p53 and p21 proteins and lowers the levels of cyclin D1 [27,28], cyclin A, CDK4 and CDK2, thus contributing to cell-cycle arrest.
P21↑,
cycD1↓,
cycA1↓,
CDK2↓,
CDK4↓,
BAX↑, FIS also increases Bax [27,28] and Bak [27] protein expression, but reduces the levels of Bcl-2 [27,28], Bcl-xL [27] and PCNA [28], and then starts the mitochondrial apoptotic pathway.
Bcl-2↓,
PCNA↓,
HER2/EBBR2↓, FIS reduces HER2 tyrosine phosphorylation in a dose-dependent manner and aids in proteasomal degradation of HER2 rather than lysosomal degradation
Cyt‑c↑, FIS cells causes destabilization of the mitochondrial membrane and an increase in cytochrome c levels, which is consistent with the loss of mitochondrial membrane integrity.
MMP↓,
cl‑Casp9↑,
MMP2↓, FIS reduces the enzymatic activity of both MMP-2 and MMP-9.
MMP9↓,
cl‑PARP↑, cell membrane, mitochondrial depolarization, activation of caspase-7, -8 and -9, and cleavage of PARP
uPA↓, interestingly, the promoter activity of the uPA gene is suppressed by FIS
DR4↑, induces upregulation of DR4 and DR5 death receptor expression in a dose-dependent manner
DR5↑,
ROS↓, FIS induces an increase in intracellular Ca2+ but reduces the production of ROS in WEHI-3 cells (myelomonocytic leukemia)
AIF↑, It also increases the levels of caspase-3 and AIF mRNA, but also increases necrosis markers including RIP3 and PARP1
CDC25↓, FIS reduces the expression of cdc25a, but increases the expression of p-p53, Chk1, p21 and p27, which may lead to a G0/G1 arrest.
Dose↑, FIS in concentrations from 0 to 10 μM does not affect cell viability; however, its use at concentrations of 20–40 μM significantly reduces the viability of lung cancer cells
CHOP↑, CaKi : FIS induces upregulation of CHOP expression and ROS production
ROS↑, NCI-H460 :FIS increases the ER stress signaling FIS increases the level of mitochondrial ROS FIS induces mitochondrial Ca2+ overloading and ER stress FIS induced ER stress-mediated cell death via activation of the MAPK pathway
cMyc↓, FIS influences proliferation related genes such as cyclin D1, c-myc and cyclooxygenase (COX)-2 by downregulating them.
cardioP↑, cardioprotective activity


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
AIF↑,1,   Akt↓,2,   AMPK↑,1,   ATF4↑,1,   BAX↑,1,   Bcl-2↓,1,   Ca+2↑,2,   cardioP↑,1,   Casp↑,1,   Casp3↑,2,   Casp8↑,1,   Casp9↑,1,   cl‑Casp9↑,1,   CDC25↓,1,   CDK1↓,1,   CDK2↓,2,   CDK4↓,2,   CDK6↓,1,   cFos↓,1,   ChemoSen↑,1,   CHOP↑,1,   cJun↓,1,   cMyc↓,1,   COX2↓,2,   cycA1↓,1,   cycD1↓,2,   cycE↓,1,   Cyt‑c↑,2,   Diablo↑,1,   DNAdam↑,1,   Dose↑,1,   DR4↑,1,   DR5↑,1,   E-cadherin↑,1,   eff↑,3,   EGFR↓,1,   EMT↓,1,   ER Stress↑,1,   GRP78/BiP↑,1,   Half-Life↝,1,   HER2/EBBR2↓,1,   HSP27↓,1,   HSP70/HSPA5↓,1,   IRE1↑,1,   JNK↑,1,   MAPK↓,1,   MMP↓,2,   MMP2↓,2,   MMP9↓,2,   mTOR↓,2,   mTORC1↓,2,   mTORC2↓,1,   N-cadherin↓,1,   NF-kB↓,2,   NO↑,1,   P21↑,2,   p27↑,1,   P53↑,2,   p70S6↓,1,   cl‑PARP↑,2,   PCNA↓,1,   PGE2↓,1,   PI3K↓,2,   RadioS↑,1,   RenoP↑,1,   ROS↓,2,   ROS↑,2,   TumCCA↑,2,   uPA↓,2,   Vim↓,1,   Wnt↓,1,  
Total Targets: 71

Results for Effect on Normal Cells:
antiOx↓,1,   antiOx↑,1,   p‑cMyc↑,1,   ERK↑,1,   GSH↑,1,   HO-1↑,1,   Inflam↓,2,   neuroP↑,1,   NRF2↑,1,   p16↓,1,   P21↓,1,   P53↓,1,  
Total Targets: 12

Scientific Paper Hit Count for: cMyc, cellular-MYC oncogene
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:78  Target#:35  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page