condition found tbRes List
FIS, Fisetin: Click to Expand ⟱
Features:
Fisetin is a plant based flavonoid. Found in strawberries(160ug/g), apples, persimmons, onions, cucumbers, grapes.

-Note half-life 3-4hrs
- Oral BioAv low (40-50%)
Pathways:
- induce ROS production in cancer cells, but also known to reduce it.
Also a claim Fisetin-Induced Reactive Oxygen Species Production Has No Effect on Apoptosis in RCC cells
Also one claim (NAC 10-20mM levels) that NAC enhances ROS/apoptosis
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Does not appear to lower antioxidants in cancer cells
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits HIF-1α↓, cMyc↓, LDH↓, GRP78↑,
- inhibits angiogenesis↓ : VEGF, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells : CD133↓, β-catenin↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


VEGF, Vascular endothelial growth factor: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
A signal protein produced by many cells that stimulates the formation of blood vessels. Vascular endothelial growth factor (VEGF) is a signal protein that plays a crucial role in angiogenesis, the process by which new blood vessels form from existing ones. This process is vital for normal physiological functions, such as wound healing and the menstrual cycle, but it is also a key factor in the growth and spread of tumors in cancer.
Because of its significant role in tumor growth and progression, VEGF has become a target for cancer therapies. Anti-VEGF therapies, such as monoclonal antibodies (e.g., bevacizumab) and small molecule inhibitors, aim to inhibit the action of VEGF, thereby reducing blood supply to tumors and limiting their growth. These therapies have been used in various types of cancer, including colorectal, lung, and breast cancer.


Scientific Papers found: Click to Expand⟱
2845- FIS,    Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy
- Review, Var, NA
PI3K↓, block multiple signaling pathways such as the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) and p38
Akt↓,
mTOR↓,
p38↓,
*antiOx↑, antioxidant, anti-inflammatory, antiangiogenic, hypolipidemic, neuroprotective, and antitumor effect
*neuroP↑,
Casp3↑, U266 cancer cell line through activation of caspase-3, downregulation of Bcl-2 and Mcl-1L, upregulation of Bax, Bim and Bad
Bcl-2↓,
Mcl-1↓,
BAX↑,
BIM↑,
BAD↑,
AMPK↑, activation of 5'adenosine monophosphate-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC) and decreased phosphorylation of AKT and mTOR were also observed
ACC↑,
DNAdam↑, DNA fragmentation, mitochondrial membrane depolarizatio
MMP↓,
eff↑, fisetin in combination with a citrus flavanone, hesperetin mediated apoptosis by mitochondrial membrane depolarization and caspase-3 act
ROS↑, NCI-H460 human non-small cell lung cancer line, fisetin generated reactive oxygen species (ROS), endoplasmic reticulum (ER) stress
cl‑PARP↑, fisetin treatment resulted in PARP cleavage
Cyt‑c↑, release of cyt. c
Diablo↑, release of cyt. c and Smac/DIABLO from mitochondria,
P53↑, increased p53 protein levels
p65↓, reduced phospho-p65 and Myc oncogene expression
Myc↓,
HSP70/HSPA5↓, fisetin causes inhibition of proliferation by the modulation of heat shock protein 70 (HSP70), HSP27
HSP27↓,
COX2↓, anti-proliferative effects of fisetin through the activation of apoptosis via inhibition of cyclooxygenase-2 (COX-2) and Wnt/EGFR/NF-κB signaling pathways
Wnt↓,
EGFR↓,
NF-kB↓,
TumCCA↑, The anti-proliferative effects of fisetin and hesperetin were shown to be occurred through S, G2/M, and G0/G1 phase arrest in K562 cell progression
CDK2↓, decrease in levels of cyclin D1, cyclin A, Cdk-4 and Cdk-2
CDK4↓,
cycD1↓,
cycA1↓,
P21↑, increase in p21 CIP1/WAF1 levels in HT-29 human colon cancer cell
MMP2↓, fisetin has exhibited tumor inhibitory effects by blocking matrix metalloproteinase-2 (MMP- 2) and MMP-9 at mRNA and protein levels,
MMP9↓,
TumMeta↓, Antimetastasis
MMP1↓, fisetin also inhibited the MMP-14, MMP-1, MMP-3, MMP-7, and MMP-9
MMP3↓,
MMP7↓,
MET↓, promotion of mesenchymal to epithelial transition associated with a decrease in mesenchymal markers i.e. N-cadherin, vimentin, snail and fibronectin and an increase in epithelial markers i.e. E-cadherin
N-cadherin↓,
Vim↓,
Snail↓,
Fibronectin↓,
E-cadherin↑,
uPA↓, fisetin suppressed the expression and activity of urokinase plasminogen activator (uPA)
ChemoSen↑, combination treatment of fisetin and sorafenib reduced the migration and invasion of BRAF-mutated melanoma cells both in in-vitro
EMT↓, inhibited epithelial to mesenchymal transition (EMT) as observed by a decrease in N-cadherin, vimentin and fibronectin and an increase in E-cadherin
Twist↓, inhibited expression of Snail1, Twist1, Slug, ZEB1 and MMP-2 and MMP-9
Zeb1↓,
cFos↓, significant decrease in NF-κB, c-Fos, and c-Jun levels
cJun↓,
EGF↓, Fisetin inhibited epidermal growth factor (EGF)
angioG↓, Antiangiogenesis
VEGF↓, decreased expression of endothelial nitric oxide synthase (eNOS) and VEGF, EGFR, COX-2
eNOS↓,
*NRF2↑, significantly increased nuclear translocation of Nrf2 and antioxidant response element (ARE) luciferase activity, leading to upregulation of HO-1 expression
HO-1↑,
NRF2↓, Fisetin also triggered the suppression of Nrf2
GSTs↓, declined placental type glutathione S-transferase (GST-p) level in the liver of the fisetin- treated rats with hepatocellular carcinoma (HCC)
ATF4↓, Fisetin also rapidly increased the levels of both Nrf2 and ATF4

2843- FIS,    Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential
- Review, Var, NA
NRF2↑, fisetin increased the protein level and accumulation Nrf2 and down regulated the protein levels of Keap1
Keap1↓,
ChemoSen↑, In vitro studies showed that fisetin and quercetin could also act against chemotherapeutic resistance in several cancers
BioAv↓, Fisetin has low aqueous solubility and bioavailability
Cyt‑c↑, release of cytochrome c from mitochondria, caspase-3 and caspase-9 mRNA and protein expression, and B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X (Bax) levels, were found to be regulated in the fisetin-treated cancer cell line
Casp3↑,
Casp9↑,
BAX↑,
tumCV↓, fisetin at 5–80 µM significantly reduced the viability of A431 human epidermoid carcinoma cells by the release of cytochrome c,
Mcl-1↓, reducing the anti-apoptotic protein expression of Bcl-2, Bcl-xL, and Mcl-1 along with elevation of pro-apoptotic protein expression (Bax, Bak, and Bad) and caspase cleavage and poly-ADP-ribose polymerase (PARP) protein
cl‑PARP↑,
IGF-1↓, fisetin promoted caspase-8 and cytochrome c expression, possibly by impeding the aberrant activation of insulin growth factor receptor 1 and Akt
Akt↓,
CDK6↓, fisetin binds with CDK6, which in turn blocks its activity with an inhibitory concentration (IC50) at a concentration of 0.85 μM
TumCCA↑, fisetin is identified as a regulator of cell cycle checkpoints, leading to cell arrest through CDK inhibition in HL60 cells and astrocyte cells over the G0/G1, S, and G2/M phases
P53?, exhibiting elevated levels of p53
cycD1↓, 10–60 μM fisetin concentration, prostate cancer cells PC3, LNCaP, and CWR22Ry1 had decreased cellular viability and decreased levels of D1, D2, and E cyclins and their activating partners CDK2, and CDKs 4/ 6,
cycE↓,
CDK2↓, decreased levels of D1, D2, and E cyclins and their activating partners CDK2, and CDKs 4/ 6,
CDK4↓,
CDK6↓,
MMP2↓, fisetin displayed tumor inhibitory effects by blocking MMP-2 and MMP-9 at mRNA and protein levels in prostate PC-3 cells
MMP9↓,
MMP1↓, Similarly, fisetin can also inhibit MMP-1, MMP-9, MMP-7, MMP-3, and MMP-14 gene expression linked with ECM remodeling in human umbilical vascular endothelial cells (HUVECs) and HT-1080 fibrosarcoma cells [9
MMP7↓,
MMP3↓,
VEGF↓, fisetin in a concentration-dependent manner (10–50 μM concentration) significantly inhibited regular serum, growth-enhancing supplement, and vascular endothelial growth factor (VEGF)
PI3K↓, fisetin inhibited PI3K expression and phosphorylation of Akt
mTOR↓, fisetin treatment activated the apoptotic process through inhibiting both PI3K and mammalian target of rapamycin (mTOR) signaling pathways
COX2↓, fisetin resulted in activation of apoptosis and inhibition of COX-2 and the Wnt/EGFR/NF-kB pathway
Wnt↓,
EGFR↓,
NF-kB↓,
ERK↓, Fisetin is one of the flavonoids that has been found to suppress ERK1/2 signaling in human gastric (SGC7901), hepatic (HepG2), colorectal (Caco-2)
ROS↑, fisetin induced ROS generation and suppressed ERK through its phosphorylation
angioG↓, fisetin-induced anti-angiogenesis led to reduced VEGF and epidermal growth factor receptor (EGFR) expression
TNF-α↓, Fisetin suppressed IL-1β-mediated expression of inducible nitric oxide synthase, nitric oxide, interleukin-6, tumor necrotic factor-α, prostaglandin E2, cyclooxygenase-2 (iNOS, NO, IL-6, TNF-α, PGE2, and COX-2),
PGE2↓,
iNOS↓,
NO↓,
IL6↓,
HSP70/HSPA5↝, fisetin-mediated inhibition of cellular proliferation by HSP70 and HSP27 regulation
HSP27↝,

2824- FIS,    Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics
- Review, Var, NA
*antiOx↑, Fisetin is one such naturally derived flavone that offers numerous pharmacological benefits, i.e., antioxidant, anti-inflammatory, antiangiogenic, and anticancer properties.
*Inflam↓,
angioG↓,
BioAv↓, poor bioavailability associated with its extreme hydrophobicity hampers its clinical utility
BioAv↑, The issues related to fisetin delivery can be addressed by adapting to the developmental aspects of nanomedicines, such as formulating it into lipid or polymer-based systems, including nanocochleates and liposomes
TumCP↓, fisetin also inhibits tumor proliferation by repressing tumor mass multiplication, invasion, migration, and autophagy.
TumCI↓,
TumCMig↓,
*neuroP↑, figure 2
EMT↓, It affects the cell cycle and thereby cell proliferation, microtubule assembly, cell migration and invasion, epithelial to mesenchymal transition (EMT), and cell death
ROS↑, cell death caused by fisetin is possibly due to the induction of apoptosis by fisetin or other signaling molecules and reactive oxygen species (ROS)
selectivity↑, Without influencing the growth of normal cells, fisetin has the capability to hinder the formation of colonies and inhibit the multiplication of cancer cells.
EGFR↓, fisetin restricts the multiplication of EGFR 2-overexpressing SK-BR-3 breast tumor masses
NF-kB↓, fisetin inhibits cancer metastasis by reducing the expressions of nuclear factor-kB (NF-kB)-modulated metastatic proteins in a variety of tumor cell types, including vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP)
VEGF↓,
MMP9↓,
MMP↓, rupturing the plasma membrane, depolarizing mitochondria, cleaving PARP, and activating caspase-7, -8, and -9.
cl‑PARP↑,
Casp7↑,
Casp8↑,
Casp9↑,
*ROS↓, Fisetin is a bioactive flavonol molecule that can easily penetrate the cell membrane due to its hydrophobic nature [51,52], reducing the generation of inflammatory cytokines and reactive oxygen species (ROS) in microglial cells, (normal cells)
uPA↓, Perhaps fisetin lowers angiogenesis, consequently suppressing tumor multiplication by urokinase plasminogen activator (uPA) inhibition
MMP1↓, powerful matrix metalloproteinase (MMP)-1 inhibitor
Wnt↓, Fisetin works on several cellular pathways, such as Wnt, Akt-PI3K, and ERK, as an inhibitor
Akt↓,
PI3K↓,
ERK↓,
Half-Life↝, Fisetin exhibits a very short terminal half-life of approximately 3 hrs in its free form. This half-life is found to be less than that of its metabolites

2827- FIS,    The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment
- Review, Var, NA
*antiOx↑, effective antioxidant, anti-inflammatory
*Inflam↓,
neuroP↑, neuro-protective, anti-diabetic, hepato-protective and reno-protective potential.
hepatoP↑,
RenoP↑,
cycD1↓, Figure 3
TumCCA↑,
MMPs↓,
VEGF↓,
MAPK↓,
NF-kB↓,
angioG↓,
Beclin-1↑,
LC3s↑,
ATG5↑,
Bcl-2↓,
BAX↑,
Casp↑,
TNF-α↓,
Half-Life↓, Fisetin was given at an effective dosage of 223 mg/kilogram intraperitoneally in mice. The plasma concentration declined biophysically, with a rapid half-life of 0.09 h and a terminal half-life of 3.1 h,
MMP↓, Fisetin powerfully improved apoptotic cells and caused the depolarization of the mitochondrial membrane.
mt-ROS↑, Fisetin played a role in the induction of apoptosis, independently of p53, and increased mitochondrial ROS generation.
cl‑PARP↑, fisetin-induced sub-G1 population as well as PARP cleavage.
CDK2↓, Moreover, the activities of cyclin-dependent kinases (CDK) 2 as well as CDK4 were decreased by fisetin and also inhibited CDK4 activity in a cell-free system, demonstrating that it might directly inhibit the activity of CDK4
CDK4↓,
Cyt‑c↑, Moreover, release of cytochrome c and Smac/Diablo was induced by fisetin
Diablo↑,
DR5↑, Fisetin caused an increase in the protein levels of cleaved caspase-8, DR5, Fas ligand, and TNF-related apoptosis-inducing ligand
Fas↑,
PCNA↓, Fisetin decreased proliferation-related proteins such as PCNA, Ki67 and phosphorylated histone H3 (p-H3) and decreased the expression of cell growth
Ki-67↓,
p‑H3↓,
chemoP↑, Paclitaxel treatment only showed more toxicity to normal cells than the combination of flavonoids with paclitaxel, suggesting that fisetin might bring some safety against paclitaxel-facilitated cytotoxicity.
Ca+2↑, Fisetin encouraged apoptotic cell death via increased ROS and Ca2+, while it increased caspase-8, -9 and -3 activities and reduced the mitochondrial membrane potential in HSC3 cells.
Dose↝, After fisetin treatment at 40 µM, invasion was reduced by 87.2% and 92.4%, whereas after fisetin treatment at 20 µM, invasion was decreased by 52.4% and 59.4% in SiHa and CaSki cells, respectively
CDC25↓, This study proposes that fisetin caused the arrest of the G2/M cell cycle via deactivating Cdc25c as well Cdc2 via the activation of Chk1, 2 and ATM
CDC2↓,
CHK1↑,
Chk2↑,
ATM↑,
PCK1↓, fisetin decreases the levels of SOS-1, pEGFR, GRB2, PKC, Ras, p-p-38, p-ERK1/2, p-JNK, VEGF, FAK, PI3K, RhoA, p-AKT, uPA, NF-ĸB, MMP-7,-9 and -13, whereas it increases GSK3β as well as E-cadherin in U-2 OS
RAS↓,
p‑p38↓,
Rho↓,
uPA↓,
MMP7↓,
MMP13↓,
GSK‐3β↑,
E-cadherin↑,
survivin↓, whereas those of survivin and BCL-2 were reduced in T98G cells
VEGFR2↓, Fisetin inhibited the VEGFR expression in Y79 cells as well as the angiogenesis of a tumor.
IAP2↓, The downregulation of cIAP-2 by fisetin
STAT3↓, fisetin induced apoptosis in TPC-1 cells via the initiation of oxidative damage and enhanced caspases expression by downregulating STAT3 and JAK 1 signaling
JAK1↓,
mTORC1↓, Fisetin acts as a dual inhibitor of mTORC1/2 signaling,
mTORC2↓,
NRF2↑, Moreover, In JC cells, the Nrf2 expression was gradually increased by fisetin from 8 h to 24 h

2829- FIS,    Fisetin: An anticancer perspective
- Review, Var, NA
TumCP↓, Being a potent anticancer agent, fisetin has been used to inhibit stages in the cancer cells (proliferation, invasion), prevent cell cycle progression, inhibit cell growth, induce apoptosis, cause polymerase (PARP) cleavage
TumCI↓,
TumCCA↑,
TumCG↓,
Apoptosis↑,
cl‑PARP↑,
PKCδ↓, fisetin also suppresses the activation of the PKCα/ROS/ERK1/2 and p38 MAPK signaling pathways, reduces the NF‐κB activation, and down‐regulates the level of the oncoprotein securin
ROS↓,
ERK↓,
NF-kB↓,
survivin↓,
ROS↑, In human multiple myeloma U266 cells, fisetin stimulated the production of free radical species that led to apoptosis
PI3K↓, Multiple studies also authenticated the anticancer role of fisetin through various signaling pathways such as blocking of mammalian target of rapamycin (PI3K/Akt/mTOR)
Akt↓,
mTOR↓,
MAPK↓, phosphatidylinositol‐3‐kinase/protein kinase B, mitogen‐activated protein kinases (MAPK)‐dependent nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB), and p38, respectively,
p38↓,
HER2/EBBR2↓, (HER2)/neu‐overexpressing breast cancer cell lines. Fisetin caused induction through inactivating the receptor, inducing the degradation of the proteasomes, reducing its half‐life
EMT↓, In addition, mutation of epithelial‐to‐mesenchymal transition (EMT)
PTEN↑, up‐regulation of expression of PTEN mRNA and protein were reported after fisetin treatment
HO-1↑, In breast cancer cells (4T1 and JC cells), fisetin increased HO‐1 mRNA and protein expressions, elevated Nrf2 expression
NRF2↑,
MMP2↓, fisetin reduced MMP‐2 and MMP‐9 enzyme activity and gene expression for both mRNA levels and protein
MMP9↓,
MMP↓, fisetin treatment further led to permeabilization of mitochondrial membrane, activation of caspase‐8 and caspase‐9, as well as the cleavage of poly(ADP‐ribose) polymerase 1
Casp8↑,
Casp9↑,
TRAILR↑, enhanced the levels of TRAIL‐R1
Cyt‑c↑, mitochondrial releasing of cytochrome c into cytosol, up‐regulation and down‐regulation of X‐linked inhibitor of apoptosis protein
XIAP↓,
P53↑, fisetin also enhanced the protein p53 levels
CDK2↓, lowered cell number, the activities of CDK‐2,4)
CDK4↓,
CDC25↓, it also decreased cell division cycle protein levels (CDC)2 and CDC25C, and CDC2 activity (Lu et al., 2005)
CDC2↓,
VEGF↓, down‐regulating the expressions of p‐ERK1/2, vascular endothelial growth factor receptor 1(VEGFR1), p38, and pJNK, respectively
DNAdam↑, Fisetin (80 microM) showed dose‐dependently caused DNA fragmentation, induced cellular swelling and apoptotic death, and showed characteristics of apoptosis.
TET1↓, lowered the TET1 expression levels
CHOP↑, caused up‐regulation of (C/EBP) homologous protein (CHOP) expression and reactive oxygen species production,
CD44↓, down‐regulation of CD44 and CD133 markers
CD133↓,
uPA↓, down‐regulation of levels of matrix metalloproteinase‐2 (MMP‐2), urokinase‐type plasminogen activator (uPA),

2830- FIS,    Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent
- Review, Var, NA
TumCG↓, suppressing cell growth, triggering programmed cell death, reducing the formation of new blood vessels, protecting against oxidative stress, and inhibiting cell migration.
angioG↓,
*ROS↓,
TumCMig↓,
VEGF↓, including vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), PI3K/Akt/mTOR, and Nrf2/HO-1.
MAPK↑, including the activation of MAPK. activation of MAPK is crucial for mediating cancer cell proliferation, apoptosis, and invasion
NF-kB↓, ability of fisetin to suppress NF-κB activity has been demonstrated in various diseases
PI3K↓, fisetin has been shown to inhibit the metastasis of PC3 prostate cancer cells by reducing the activity of the PI3K/AKT
Akt↓,
mTOR↓, Fisetin has been shown to be effective against PI3K expression, AKT phosphorylation, and mTOR activation in various cancer cells,
NRF2↑, effects of fisetin on the activation of Nrf2 and upregulation of HO-1 have been demonstrated in various diseases
HO-1↑,
ROS↓, Liver cancer Resist proliferation, migration and invasion, induce apoptosis, attenuate ROS and inflammation
Inflam↓,
ER Stress↑, Oral cancer Induce apoptosis and autophagy, promote ER stress and ROS, suppress proliferation
ROS↑, Multiple studies have demonstrated that fisetin has the ability to induce apoptosis in cancer cells, and various mechanisms are involved, including the activation of MAPK, NF-κB, p53, and the generation of reactive oxygen species (ROS)
TumCP↓,
ChemoSen↑, Breast cancer Promote apoptosis and invasion and metastasis, enhance chemotherapeutic effects
PTEN↑,
P53↑, activation of MAPK, NF-κB, p53,
Casp3↑,
Casp8↑,
Casp9↑,
COX2↓, fisetin inhibits COX2 expression
Wnt↓, regulating a number of important angiogenesis-related factors in cancer cells, such as VEGF, MMP2/9, eNOS, wingless and Wnt-signaling.
EGFR↓,
Mcl-1↓,
survivin↓, fisetin interferes with NF-κB signaling, resulting in the reduction of survivin, TRAF1, Bcl-xl, Bcl-2, and IAP1/2 levels, ultimately inhibiting apoptosis
IAP1↓,
IAP2↓,
PGE2↓, fisetin inhibits COX2 expression, leading to the down-regulation of PGE2 secretion and inactivation of β-catenin, thereby inducing apoptosis
β-catenin/ZEB1↓,
DR5↑, fisetin markedly induces apoptosis in renal carcinoma through increased expression of DR5, which is regulated by p53.
MMP2↓, fisetin has been shown to inhibit the metastasis of PC3 prostate cancer cells by reducing the activity of the PI3K/AKT and JNK pathways, resulting in the suppression of MMP-2 and MMP-9 expression
MMP9↓,
FAK↓, fisetin can inhibit cell migration and reduce focal adhesion kinase (FAK) phosphorylation levels
uPA↓, fisetin significantly suppresses the invasion of U-2 cells by decreasing the expression of NF-κB, urokinase-type plasminogen activator (uPA), FAK, and MMP-2/9
EMT↓, Fisetin has been shown to have the ability to reverse EMT, thereby inhibiting the invasion and migration of cancer cells
ERK↓, fisetin has the ability to suppress ERK1/2 activation and activate JNK/p38 pathways
JNK↑,
p38↑,
PKCδ↓, fisetin reduces the expression of MMP-9 by inhibiting PKCα/ROS/ERK1/2 and p38 MAPK activation
BioAv↓, low water solubility of fisetin poses a significant challenge for its administration, which can limit its biological effects
BioAv↑, Compared to free fisetin, fisetin nanoemulsion has demonstrated a 3.9-fold increase in the generation of reactive oxygen species (ROS) and induction of apoptosis, highlighting its enhanced efficacy
BioAv↑, Liposomal encapsulation has shown potential in enhancing the anticancer therapeutic effects of fisetin

3372- QC,  FIS,  KaempF,    Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol, and Quercetin on Head and Neck Cancers
- Review, HNSCC, NA
ROCK1↑, quercetin affects the level of RhoA and NF-κB proteins in SAS cells, and stimulates the expression of RhoA, ROCK1, and NF-κB in SAS cells [53].
TumCCA↓, inhibition of the cell cycle;
HSPs↓, inhibition of heat shock proteins;
RAS↓, inhibition of Ras protein expression.
ROS↑, fisetin induces production of reactive oxygen species (ROS), increases Ca2+ release, and decreases the mitochondrial membrane potential (Ψm) in head and neck neoplastic cells.
Ca+2↑,
MMP↓,
Cyt‑c↑, quercetin increases the expression level of cytochrome c, apoptosis inducing factor and endonuclease G
Endon↑,
MMP9↓, quercetin inhibits MMP-9 and MMP-2 expression and reduces levels of the following proteins: MMP-2, -7, -9 [49,53] and -10
MMP2↓,
MMP7↓,
MMP-10↓,
VEGF↓, as well as VEGF, NF-κB p65, iNOS, COX-2, and uPA, PI3K, IKB-α, IKB-α/β, p-IKKα/β, FAK, SOS1, GRB2, MEKK3 and MEKK7, ERK1/2, p-ERK1/2, JNK1/2, p38, p-p38, c-JUN, and pc-JUN
NF-kB↓,
p65↓,
iNOS↓,
COX2↓,
uPA↓,
PI3K↓,
FAK↓,
MEK↓,
ERK↓,
JNK↓,
p38↓,
cJun↓,
FOXO3↑, Quercetin causes an increase in the level of FOXO1 protein both in a dose- and time-dependent way; however, it does not affect changes in expression of FOXO3a


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
ACC↑,1,   Akt↓,5,   AMPK↑,1,   angioG↓,5,   Apoptosis↑,1,   ATF4↓,1,   ATG5↑,1,   ATM↑,1,   BAD↑,1,   BAX↑,3,   Bcl-2↓,2,   Beclin-1↑,1,   BIM↑,1,   BioAv↓,3,   BioAv↑,3,   Ca+2↑,2,   Casp↑,1,   Casp3↑,3,   Casp7↑,1,   Casp8↑,3,   Casp9↑,4,   CD133↓,1,   CD44↓,1,   CDC2↓,2,   CDC25↓,2,   CDK2↓,4,   CDK4↓,4,   CDK6↓,2,   cFos↓,1,   chemoP↑,1,   ChemoSen↑,3,   CHK1↑,1,   Chk2↑,1,   CHOP↑,1,   cJun↓,2,   COX2↓,4,   cycA1↓,1,   cycD1↓,3,   cycE↓,1,   Cyt‑c↑,5,   Diablo↑,2,   DNAdam↑,2,   Dose↝,1,   DR5↑,2,   E-cadherin↑,2,   eff↑,1,   EGF↓,1,   EGFR↓,4,   EMT↓,4,   Endon↑,1,   eNOS↓,1,   ER Stress↑,1,   ERK↓,5,   FAK↓,2,   Fas↑,1,   Fibronectin↓,1,   FOXO3↑,1,   GSK‐3β↑,1,   GSTs↓,1,   p‑H3↓,1,   Half-Life↓,1,   Half-Life↝,1,   hepatoP↑,1,   HER2/EBBR2↓,1,   HO-1↑,3,   HSP27↓,1,   HSP27↝,1,   HSP70/HSPA5↓,1,   HSP70/HSPA5↝,1,   HSPs↓,1,   IAP1↓,1,   IAP2↓,2,   IGF-1↓,1,   IL6↓,1,   Inflam↓,1,   iNOS↓,2,   JAK1↓,1,   JNK↓,1,   JNK↑,1,   Keap1↓,1,   Ki-67↓,1,   LC3s↑,1,   MAPK↓,2,   MAPK↑,1,   Mcl-1↓,3,   MEK↓,1,   MET↓,1,   MMP↓,5,   MMP-10↓,1,   MMP1↓,3,   MMP13↓,1,   MMP2↓,5,   MMP3↓,2,   MMP7↓,4,   MMP9↓,6,   MMPs↓,1,   mTOR↓,4,   mTORC1↓,1,   mTORC2↓,1,   Myc↓,1,   N-cadherin↓,1,   neuroP↑,1,   NF-kB↓,7,   NO↓,1,   NRF2↓,1,   NRF2↑,4,   P21↑,1,   p38↓,3,   p38↑,1,   p‑p38↓,1,   P53?,1,   P53↑,3,   p65↓,2,   cl‑PARP↑,5,   PCK1↓,1,   PCNA↓,1,   PGE2↓,2,   PI3K↓,6,   PKCδ↓,2,   PTEN↑,2,   RAS↓,2,   RenoP↑,1,   Rho↓,1,   ROCK1↑,1,   ROS↓,2,   ROS↑,6,   mt-ROS↑,1,   selectivity↑,1,   Snail↓,1,   STAT3↓,1,   survivin↓,3,   TET1↓,1,   TNF-α↓,2,   TRAILR↑,1,   TumCCA↓,1,   TumCCA↑,4,   TumCG↓,2,   TumCI↓,2,   TumCMig↓,2,   TumCP↓,3,   tumCV↓,1,   TumMeta↓,1,   Twist↓,1,   uPA↓,6,   VEGF↓,7,   VEGFR2↓,1,   Vim↓,1,   Wnt↓,4,   XIAP↓,1,   Zeb1↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 151

Results for Effect on Normal Cells:
antiOx↑,3,   Inflam↓,2,   neuroP↑,2,   NRF2↑,1,   ROS↓,2,  
Total Targets: 5

Scientific Paper Hit Count for: VEGF, Vascular endothelial growth factor
7 Fisetin
1 Quercetin
1 Kaempferol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:78  Target#:334  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page