condition found tbRes List
FIS, Fisetin: Click to Expand ⟱
Features:
Fisetin is a plant based flavonoid. Found in strawberries(160ug/g), apples, persimmons, onions, cucumbers, grapes.

-Note half-life 3-4hrs
- Oral BioAv low (40-50%)
Pathways:
- induce ROS production in cancer cells, but also known to reduce it.
Also a claim Fisetin-Induced Reactive Oxygen Species Production Has No Effect on Apoptosis in RCC cells
Also one claim (NAC 10-20mM levels) that NAC enhances ROS/apoptosis
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Does not appear to lower antioxidants in cancer cells
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits HIF-1α↓, cMyc↓, LDH↓, GRP78↑,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells : CD133↓, β-catenin↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCI, Tumor Cell invasion: Click to Expand ⟱
Source:
Type:
Tumor cell invasion is a critical process in cancer progression and metastasis, where cancer cells spread from the primary tumor to surrounding tissues and distant organs. This process involves several key steps and mechanisms:

1.Epithelial-Mesenchymal Transition (EMT): Many tumors originate from epithelial cells, which are typically organized in layers. During EMT, these cells lose their epithelial characteristics (such as cell-cell adhesion) and gain mesenchymal traits (such as increased motility). This transition is crucial for invasion.

2.Degradation of Extracellular Matrix (ECM): Tumor cells secrete enzymes, such as matrix metalloproteinases (MMPs), that degrade the ECM, allowing cancer cells to invade surrounding tissues. This degradation facilitates the movement of cancer cells through the tissue.

3.Cell Migration: Once the ECM is degraded, cancer cells can migrate. They often use various mechanisms, including amoeboid movement and mesenchymal migration, to move through the tissue. This migration is influenced by various signaling pathways and the tumor microenvironment.

4.Angiogenesis: As tumors grow, they require a blood supply to provide nutrients and oxygen. Tumor cells can stimulate the formation of new blood vessels (angiogenesis) through the release of growth factors like vascular endothelial growth factor (VEGF). This not only supports tumor growth but also provides a route for cancer cells to enter the bloodstream.

5.Invasion into Blood Vessels (Intravasation): Cancer cells can invade nearby blood vessels, allowing them to enter the circulatory system. This step is crucial for metastasis, as it enables cancer cells to travel to distant sites in the body.

6.Survival in Circulation: Once in the bloodstream, cancer cells must survive the immune response and the shear stress of blood flow. They can form clusters with platelets or other cells to evade detection.

7.Extravasation and Colonization: After traveling through the bloodstream, cancer cells can exit the circulation (extravasation) and invade new tissues. They may then establish secondary tumors (metastases) in distant organs.

8.Tumor Microenvironment: The surrounding microenvironment plays a significant role in tumor invasion. Factors such as immune cells, fibroblasts, and signaling molecules can either promote or inhibit invasion and metastasis.


Scientific Papers found: Click to Expand⟱
2847- FIS,    Fisetin-induced cell death, apoptosis, and antimigratory effects in cholangiocarcinoma cells
- in-vitro, CCA, NA
tumCV↓, Fisetin was significant in suppressing CCA cell viability and colony formation during the course of this experiment.
ChemoSen↑, fisetin significantly potentiated the cisplatin-induced CCA cells death
TumCMig↓, reduced the migration of cancer cells and demonstrated more pronounced effects on KKU-M452 cells
ROS↑, fisetin prompted cell death and apoptosis in CCA cells by stimulating the generation of ROS in KKU-100 cells at a dosage of 50 μM
TumCI↓, suppression of cell invasion and migration,prevention of angiogenesis
angioG↓,
CDK2↓, mechanisms including the suppression of cyclin-dependent kinases, the inhibition of PI3K/Akt/mTOR
PI3K↓,
Akt↓,
mTOR↓,
EGFR↓, suppression of the EGFR pathway, the stimulation of the caspase cascade
Casp↑,
mTORC1↓, suppressing the mTORC1 and 2 signaling
mTORC2↑,
cycD1↓, decreasing the level of the cyclin D1 and cyclin E mRNA
cycE↓,
MMP2↓, Matrix metalloproteinases (MMP) 2 and MMP 9 gene expression and enzyme activity are suppressed
MMP9↓,
ER Stress↑, Moreover, fisetin also caused endoplasmic reticulum (ER) stress-induced production of mitochondrial ROS generation and Ca2+, with the involvement of MAPK signaling
Ca+2↑,
eff↓, The ROS scavenger molecule N-acetyl cysteine decreased fisetin-activated apoptosis in multiple myeloma and oral cancer cells

2850- FIS,    Fisetin regulates TPA-induced breast Cancer cell invasion by suppressing matrix metalloproteinase-9 activation via the PKC/ROS/MAPK pathways
- in-vitro, BC, MCF-7
TumCI↓, Fisetin significantly attenuated TPA-induced cell invasion in MCF-7 human breast cancer cells, and was found to inhibit the activation of the PKCα/ROS/ERK1/2 and p38 MAPK signaling pathways.
PKCδ↓,
ROS↓,
ERK↑,
p38↓,
NF-kB↓, reduced NF-κB activation
MMP9↓, reduced TPA activation of PKCα/ROS/ERK1/2 and p38 MAPK signals, ultimately leading to the downregulation of MMP-9 expression.

1113- FIS,    Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
TumCI↓,
TumCMig↓,
EMT↓,
E-cadherin↑, A549
ZO-1↑, h1299
Vim↓,
N-cadherin↓,
MMP2↓,
CD44↓,
CD133↓,
β-catenin/ZEB1↓,
NF-kB↓,
EGFR↓,
STAT3↓,

2824- FIS,    Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics
- Review, Var, NA
*antiOx↑, Fisetin is one such naturally derived flavone that offers numerous pharmacological benefits, i.e., antioxidant, anti-inflammatory, antiangiogenic, and anticancer properties.
*Inflam↓,
angioG↓,
BioAv↓, poor bioavailability associated with its extreme hydrophobicity hampers its clinical utility
BioAv↑, The issues related to fisetin delivery can be addressed by adapting to the developmental aspects of nanomedicines, such as formulating it into lipid or polymer-based systems, including nanocochleates and liposomes
TumCP↓, fisetin also inhibits tumor proliferation by repressing tumor mass multiplication, invasion, migration, and autophagy.
TumCI↓,
TumCMig↓,
*neuroP↑, figure 2
EMT↓, It affects the cell cycle and thereby cell proliferation, microtubule assembly, cell migration and invasion, epithelial to mesenchymal transition (EMT), and cell death
ROS↑, cell death caused by fisetin is possibly due to the induction of apoptosis by fisetin or other signaling molecules and reactive oxygen species (ROS)
selectivity↑, Without influencing the growth of normal cells, fisetin has the capability to hinder the formation of colonies and inhibit the multiplication of cancer cells.
EGFR↓, fisetin restricts the multiplication of EGFR 2-overexpressing SK-BR-3 breast tumor masses
NF-kB↓, fisetin inhibits cancer metastasis by reducing the expressions of nuclear factor-kB (NF-kB)-modulated metastatic proteins in a variety of tumor cell types, including vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP)
VEGF↓,
MMP9↓,
MMP↓, rupturing the plasma membrane, depolarizing mitochondria, cleaving PARP, and activating caspase-7, -8, and -9.
cl‑PARP↑,
Casp7↑,
Casp8↑,
Casp9↑,
*ROS↓, Fisetin is a bioactive flavonol molecule that can easily penetrate the cell membrane due to its hydrophobic nature [51,52], reducing the generation of inflammatory cytokines and reactive oxygen species (ROS) in microglial cells, (normal cells)
uPA↓, Perhaps fisetin lowers angiogenesis, consequently suppressing tumor multiplication by urokinase plasminogen activator (uPA) inhibition
MMP1↓, powerful matrix metalloproteinase (MMP)-1 inhibitor
Wnt↓, Fisetin works on several cellular pathways, such as Wnt, Akt-PI3K, and ERK, as an inhibitor
Akt↓,
PI3K↓,
ERK↓,
Half-Life↝, Fisetin exhibits a very short terminal half-life of approximately 3 hrs in its free form. This half-life is found to be less than that of its metabolites

2829- FIS,    Fisetin: An anticancer perspective
- Review, Var, NA
TumCP↓, Being a potent anticancer agent, fisetin has been used to inhibit stages in the cancer cells (proliferation, invasion), prevent cell cycle progression, inhibit cell growth, induce apoptosis, cause polymerase (PARP) cleavage
TumCI↓,
TumCCA↑,
TumCG↓,
Apoptosis↑,
cl‑PARP↑,
PKCδ↓, fisetin also suppresses the activation of the PKCα/ROS/ERK1/2 and p38 MAPK signaling pathways, reduces the NF‐κB activation, and down‐regulates the level of the oncoprotein securin
ROS↓,
ERK↓,
NF-kB↓,
survivin↓,
ROS↑, In human multiple myeloma U266 cells, fisetin stimulated the production of free radical species that led to apoptosis
PI3K↓, Multiple studies also authenticated the anticancer role of fisetin through various signaling pathways such as blocking of mammalian target of rapamycin (PI3K/Akt/mTOR)
Akt↓,
mTOR↓,
MAPK↓, phosphatidylinositol‐3‐kinase/protein kinase B, mitogen‐activated protein kinases (MAPK)‐dependent nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB), and p38, respectively,
p38↓,
HER2/EBBR2↓, (HER2)/neu‐overexpressing breast cancer cell lines. Fisetin caused induction through inactivating the receptor, inducing the degradation of the proteasomes, reducing its half‐life
EMT↓, In addition, mutation of epithelial‐to‐mesenchymal transition (EMT)
PTEN↑, up‐regulation of expression of PTEN mRNA and protein were reported after fisetin treatment
HO-1↑, In breast cancer cells (4T1 and JC cells), fisetin increased HO‐1 mRNA and protein expressions, elevated Nrf2 expression
NRF2↑,
MMP2↓, fisetin reduced MMP‐2 and MMP‐9 enzyme activity and gene expression for both mRNA levels and protein
MMP9↓,
MMP↓, fisetin treatment further led to permeabilization of mitochondrial membrane, activation of caspase‐8 and caspase‐9, as well as the cleavage of poly(ADP‐ribose) polymerase 1
Casp8↑,
Casp9↑,
TRAILR↑, enhanced the levels of TRAIL‐R1
Cyt‑c↑, mitochondrial releasing of cytochrome c into cytosol, up‐regulation and down‐regulation of X‐linked inhibitor of apoptosis protein
XIAP↓,
P53↑, fisetin also enhanced the protein p53 levels
CDK2↓, lowered cell number, the activities of CDK‐2,4)
CDK4↓,
CDC25↓, it also decreased cell division cycle protein levels (CDC)2 and CDC25C, and CDC2 activity (Lu et al., 2005)
CDC2↓,
VEGF↓, down‐regulating the expressions of p‐ERK1/2, vascular endothelial growth factor receptor 1(VEGFR1), p38, and pJNK, respectively
DNAdam↑, Fisetin (80 microM) showed dose‐dependently caused DNA fragmentation, induced cellular swelling and apoptotic death, and showed characteristics of apoptosis.
TET1↓, lowered the TET1 expression levels
CHOP↑, caused up‐regulation of (C/EBP) homologous protein (CHOP) expression and reactive oxygen species production,
CD44↓, down‐regulation of CD44 and CD133 markers
CD133↓,
uPA↓, down‐regulation of levels of matrix metalloproteinase‐2 (MMP‐2), urokinase‐type plasminogen activator (uPA),

2839- FIS,    Dietary flavonoid fisetin for cancer prevention and treatment
- Review, Var, NA
DNAdam↑, Fisetin induced DNA fragmentation, ROS generation, and apoptosis in NCI-H460 cells via a reduction in Bcl-2 and increase in Bax expression
ROS↑,
Apoptosis↑,
Bcl-2↓,
BAX↑,
cl‑Casp9↑, Fisetin treatment increased cleavage of caspase-9 and caspase-3 thereby increasing caspase-3 activation
cl‑Casp3↑,
Cyt‑c↑, leading to cytochrome-c release
lipid-P↓, Fisetin (25 mg/kg body weight) decreased histological lesions and levels of lipid peroxidation and modulated the enzymatic and nonenzymatic anti-oxidants in B(a)P-treated Swiss Albino mice
TumCG↓, We observed that fisetin treatment (5–20 μM) inhibits cell growth and colony formation in A549 NSC lung cancer cells.
TumCA↓, Another study showed that fisetin inhibits adhesion, migration, and invasion in A549 lung cancer cells by downregulating uPA, ERK1/2, and MMP-2
TumCMig↓,
TumCI↓,
uPA↓,
ERK↓,
MMP9↓,
NF-kB↓, Treatment with fisetin also decreased the nuclear levels of NF-kB, c-Fos, c-Jun, and AP-1 and inhibited NF-kB binding.
cFos↓,
cJun↓,
AP-1↓,
TumCCA↑, Our laboratory has previously shown that treatment of LNCaP cells with fisetin caused inhibition of PCa by G1-phase cell cycle arrest
AR↓, inhibited androgen signaling and tumor growth in athymic nude mice
mTORC1↓, induced autophagic cell death in PCa cells through suppression of mTORC1 and mTORC2
mTORC2↓,
TSC2↑, activated the mTOR repressor TSC2, commonly associated with inhibition of Akt and activation of AMPK
EGF↓, Fisetin also inhibits EGF and TGF-β induced YB-1 phosphorylation and EMT in PCa cells
TGF-β↓,
EMT↓, Fisetin also inhibits EGF and TGF-β induced YB-1 phosphorylation and EMT in PCa cells
P-gp↓, decrease the P-gp protein in multidrug resistant NCI/ADR-RES cells.
PI3K↓, Fisetin also inhibited the PI3K/AKT/NFkB signaling
Akt↓,
mTOR↓, Fisetin inhibited melanoma progression in a 3D melanoma skin model with downregulation of mTOR, Akt, and upregulation of TSC
eff↑, combinational treatment study of melatonin and fisetin demonstrated enhanced antitumor activity of fisetin
ROS↓, Fisetin inhibited ROS and augmented NO generation in A375 melanoma cells
ER Stress↑, induction of ER stress evidenced by increased IRE1α, XBP1s, ATF4, and GRP78 levels in A375 and 451Lu cells.
IRE1↑,
ATF4↑,
GRP78/BiP↑,
ChemoSen↑, combination of fisetin with sorafenib effectively inhibited EMT and augmented the anti-metastatic potential of sorafenib by reducing MMP-2 and MMP-9 proteins in melanoma cell xenografts
CDK2↓, Fisetin (0–60 μM) was shown to inhibit activity of CDKs dose-dependently leading to cell cycle arrest in HT-29 human colon cancer cells
CDK4↓, Fisetin treatment decreased activities of CDK2 and CDK4 via decreased levels of cyclin-E, cyclin-D1 and increase in p21 (CIP1/WAF1) levels.
cycE↓,
cycD1↓,
P21↑,
COX2↓, fisetin (30–120 μM) induces apoptosis in colon cancer cells by inhibiting COX-2 and Wnt/EGFR/NF-kB -signaling pathways
Wnt↓,
EGFR↓,
β-catenin/ZEB1↓, Fisetin treatment inhibited Wnt/EGFR/NF-kB signaling via downregulation of β-catenin, TCF-4, cyclin D1, and MMP-7
TCF-4↓,
MMP7↓,
RadioS↑, fisetin treatment was found to radiosensitize human colorectal cancer cells which are resistant to radiotherapy
eff↑, Combined treatment of fisetin with NAC increased cleaved caspase-3, PARP, reduced mitochondrial membrane potential with induction of caspase-9 in COLO25 cells


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
Akt↓,4,   angioG↓,2,   AP-1↓,1,   Apoptosis↑,2,   AR↓,1,   ATF4↑,1,   BAX↑,1,   Bcl-2↓,1,   BioAv↓,1,   BioAv↑,1,   Ca+2↑,1,   Casp↑,1,   cl‑Casp3↑,1,   Casp7↑,1,   Casp8↑,2,   Casp9↑,2,   cl‑Casp9↑,1,   CD133↓,2,   CD44↓,2,   CDC2↓,1,   CDC25↓,1,   CDK2↓,3,   CDK4↓,2,   cFos↓,1,   ChemoSen↑,2,   CHOP↑,1,   cJun↓,1,   COX2↓,1,   cycD1↓,2,   cycE↓,2,   Cyt‑c↑,2,   DNAdam↑,2,   E-cadherin↑,1,   eff↓,1,   eff↑,2,   EGF↓,1,   EGFR↓,4,   EMT↓,4,   ER Stress↑,2,   ERK↓,3,   ERK↑,1,   GRP78/BiP↑,1,   Half-Life↝,1,   HER2/EBBR2↓,1,   HO-1↑,1,   IRE1↑,1,   lipid-P↓,1,   MAPK↓,1,   MMP↓,2,   MMP1↓,1,   MMP2↓,3,   MMP7↓,1,   MMP9↓,5,   mTOR↓,3,   mTORC1↓,2,   mTORC2↓,1,   mTORC2↑,1,   N-cadherin↓,1,   NF-kB↓,5,   NRF2↑,1,   P-gp↓,1,   P21↑,1,   p38↓,2,   P53↑,1,   cl‑PARP↑,2,   PI3K↓,4,   PKCδ↓,2,   PTEN↑,1,   RadioS↑,1,   ROS↓,3,   ROS↑,4,   selectivity↑,1,   STAT3↓,1,   survivin↓,1,   TCF-4↓,1,   TET1↓,1,   TGF-β↓,1,   TRAILR↑,1,   TSC2↑,1,   TumCA↓,1,   TumCCA↑,2,   TumCG↓,2,   TumCI↓,6,   TumCMig↓,4,   TumCP↓,2,   tumCV↓,1,   uPA↓,3,   VEGF↓,2,   Vim↓,1,   Wnt↓,2,   XIAP↓,1,   ZO-1↑,1,   β-catenin/ZEB1↓,2,  
Total Targets: 93

Results for Effect on Normal Cells:
antiOx↑,1,   Inflam↓,1,   neuroP↑,1,   ROS↓,1,  
Total Targets: 4

Scientific Paper Hit Count for: TumCI, Tumor Cell invasion
6 Fisetin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:78  Target#:324  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page