condition found tbRes List
EGCG, EGCG (Epigallocatechin Gallate): Click to Expand ⟱
Features:
EGCG (Epigallocatechin Gallate) is found in green tea. 100 times more effective than Vitamin C and 25 times more effective than Vitamin E at protecting cells from damage associated with oxidative stress.
EGCG Epigallocatechin Gallate (Green Tea) -Catechin
Summary:
1. Concentration is a factor that could determine whether green tea polyphenols act as antioxidants or pro-oxidants.
2. Poor bioavailability: taking EGCG capsules without food was better.
3. Cancer dosage 4g/day (2g twice per day)? with curcumin may help (another ref says 700–2100 mg/d)
4. EGCG is susceptible to oxidative degradation.
5. “As for the pH level, the acidic environments enhance the stability of EGCG”.
6. “EGCG may enhance nanoparticle uptake by tumor cells”
7. Might be iron chelator (removing iron from cancer cells)
8. Claimed as synergistic effect with chemotherapy ( cisplatin, bleomycin, gemcitabine.
9. May suppress glucose metabolism, interfere with VEGF, downregulate NF-κB and MMP-9, down-regulation of androgen-regulated miRNA-21.
10. Take with red pepper powder, Capsicum ratio 25:1 (based on half life, they did every 4 hr) (chili pepper vanilloid capsaicin).
11. EGCG mediated ROS formation can upregulate CTR1 expression via the ERK1/2/NEAT1 pathway, which can increase the intake of chemotherapeutic drugs such as cisplatin in NSCLC cells and act as a chemosensitizer [58]
12. Matcha green tea has highest EGCG (2-3X) because consuming leaf.
13. EGCG is an ENOX2 inhibitor.
14. Nrf2 activator in both cancer and normal cells. This example of lung cancer show both directions in different cell lines, but both toward optimim level.
Biological activity, EGCG has been reported to exhibit a range of effects, including:
    Antioxidant activity: 10-50 μM
     Anti-inflammatory activity: 20-50 μM
     Anticancer activity: 50-100 μM
     Cardiovascular health: 20-50 μM
     Neuroprotective activity: 10-50 μM

Drinking a cup (or two cups) of green tea (in which one might ingest roughly 50–100 mg of EGCG from brewed tea) generally results in peak plasma EGCG concentrations in the range of approximately 0.1 to 0.6 μM.

With higher, supplement-type doses (e.g., oral doses in the 500 mg–800 mg range that are sometimes studied for clinical benefits), peak plasma concentrations in humans can reach the low micromolar range, often reported around ~1–2 μM and in some cases up to 5 μM.

Reported values can range from about 25–50 mg of EGCG per gram of matcha powder.
In cases where the matcha is exceptionally catechin-rich, the content could reach 200–250 mg or more in 5 g.

-Peak plasma concentration roughly 1 to 2 hours after oral ingestion.
-Elimination half-life of EGCG in plasma is commonly reported to be in the range of about 3 to 5 hours.

Supplemental EGCG
Dose (mg)   ≈ Peak Plasma EGCG (µM)
~50 mg          ≈ 0.1–0.3 µM
~100 mg         ≈ 0.2–0.6 µM
~250 mg         ≈ 0.5–1.0 µM
~500 mg         ≈ 1–2 µM
~800 mg or higher  ≈ 1–5 µM

50mg of EGCG in 1g of matcha tea(1/2 teaspoon)

Studies on green tea extracts have employed doses roughly equivalent to 300–800 mg/day of EGCG. Excessive doses can cause liver toxicity in some cases.

Methods to improve bioavailability
-Lipid-based carriers or nanoemulsions
-Polymer-based nanoparticles or encapsulation
-Co-administration with ascorbic acid (vitamin C)
-Co-administration of adjuvants like piperine (perhaps sunflower lecithin and chitosan) -Using multiple smaller doses rather than one large single dose.
-Taking EGCG on an empty stomach or under fasting conditions, or aligning dosing with optimal pH conditions in the GI tract, may improve its absorption.(acidic environment is generally more favorable for its stability and absorption).
– EGCG is more stable under acidic conditions. In the stomach, where the pH is typically around 1.5 to 3.5, EGCG is less prone to degradation compared to the more neutral or basic environments of the small intestine.
- At neutral (around pH 7) or alkaline pH, EGCG undergoes auto-oxidation, reducing the effective concentration available for absorption.
– Although the stomach’s acidic pH helps maintain EGCG’s stability, most absorption occurs in the small intestine, where the pH is closer to neutral.
– To counterbalance the inherent instability in the intestine, strategies such as co-administration of pH-modifying agents (like vitamin C) are sometimes used. These agents help to maintain a slightly acidic environment in the gut microenvironment, potentially improving EGCG stability during its transit and absorption.
– The use of acidifiers or buffering agents in supplements may help preserve EGCG until it reaches the absorption sites.

-Note half-life 3–5 hours.
- low BioAv 1%? despite its limited absorption, it is rapidly disseminated throughout the body
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Does NOT Lower AntiOxidant defense in Cancer Cells: NRF2↑, TrxR↓**, SOD, GSH Catalase HO1 GPx
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, Notch↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective(possible damage at high dose), CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ERK, ERK signaling: Click to Expand ⟱
Source:
Type:
MAPK3 (ERK1)
ERK proteins are kinases that activate other proteins by adding a phosphate group. An overactivation of these proteins causes the cell cycle to stop.
The extracellular signal-regulated kinase (ERK) signaling pathway is a crucial component of the mitogen-activated protein kinase (MAPK) signaling cascade, which plays a significant role in regulating various cellular processes, including proliferation, differentiation, and survival. high levels of phosphorylated ERK (p-ERK) in tumor samples may indicate active ERK signaling and could correlate with aggressive tumor behavior

EEk singaling is frequently activated and is often associated with aggressive tumor behavior, treatment resistance, and poor outcomes.


Scientific Papers found: Click to Expand⟱
2992- EGCG,    Effects of Epigallocatechin-3-Gallate on Matrix Metalloproteinases in Terms of Its Anticancer Activity
- Review, Var, NA
AP-1↓, MMPs have binding sites for at least one transcription factor of AP-1, Sp1, and NF-κB, and EGCG can downregulate these transcription factors through signaling pathways mediated by reactive oxygen species
Sp1/3/4↓,
NF-kB↓,
ERK↓, EGCG can also decrease nuclear ERK, p38, heat shock protein-27 (Hsp27), and β-catenin levels, leading to suppression of MMPs’ expression.
P-gp↓,
HSP27↓,
β-catenin/ZEB1↓,
MMPs↓,
TNF-α↓, suppress the production of inflammatory cytokines such as TNFα and IL-1β.
IL1β↓,
MMP2↓, EGCG inhibited MMP2 secretion in glioblastoma cells.

1303- EGCG,    (-)-Epigallocatechin-3-gallate induces apoptosis in human endometrial adenocarcinoma cells via ROS generation and p38 MAP kinase activation
- in-vitro, EC, NA
TumCP↓,
ER-α36↓,
cycD1↓,
ERK↑,
Jun↓,
BAX↑,
Bcl-2↓,
cl‑Casp3↑,
ROS↑,
p38↑,

2459- EGCG,    Epigallocatechin gallate inhibits human tongue carcinoma cells via HK2‑mediated glycolysis
- in-vitro, Tong, Tca8113 - in-vitro, Tong, TSCCa
EGFR↓, EGCG exposure substantially decreased EGF-induced EGF receptor (EGFR), Akt and ERK1/2 activation, as well as the downregulation of hexokinase 2 (HK2).
Akt↓,
ERK↓,
HK2↓,
GlucoseCon↓, EGCG dose-dependently inhibited the consumption of glucose (Fig. 2A and B, middle) and production of lactate
lactateProd↓,
Glycolysis↓, EGCG downregulates HK2 expression and decreases human tongue carcinoma cell glycolysis.

649- EGCG,  CUR,  PI,    Targeting Cancer Hallmarks with Epigallocatechin Gallate (EGCG): Mechanistic Basis and Therapeutic Targets
- Review, Var, NA
*BioEnh↑, increase EGCG bioavailability is using other natural products such as curcumin and piperine
EGFR↓,
HER2/EBBR2↓,
IGF-1↓,
MAPK↓,
ERK↓, reduction in ERK1/2 phosphorylation
RAS↓,
Raf↓, Raf-1
NF-kB↓, Numerous investigations have proven that EGCG has an inhibitory effect on NF-κB
p‑pRB↓, EGCG were displayed to reduce the phosphorylation of Rb, and as a result, cells were arrested in G1 phase
TumCCA↑, arrested in G1 phase
Glycolysis↓, EGCG has been found to inhibit key enzymes involved in glycolysis, such as hexokinase and pyruvate kinase, thereby disrupting the Warburg effect and inhibiting tumor cell growth
Warburg↓,
HK2↓,
Pyruv↓,

691- EGCG,    Preclinical Pharmacological Activities of Epigallocatechin-3-gallate in Signaling Pathways: An Update on Cancer
- Review, NA, NA
Apoptosis↑,
necrosis↑,
TumAuto↑,
ERK↓, ERK1/2
p38↓,
NF-kB↓,
VEGF↓,

692- EGCG,    EGCG: The antioxidant powerhouse in lung cancer management and chemotherapy enhancement
- Review, NA, NA
ROS↑,
Apoptosis↑,
DNAdam↑,
CTR1↑,
JWA↑,
β-catenin/ZEB1↓, downregulation of the Wnt/β-catenin pathway interferes with CSC traits
P53↑,
Vim↓,
VEGF↓,
p‑Akt↓,
Hif1a↓,
COX2↓,
ERK↓,
NF-kB↓,
Akt↓,
Bcl-xL↓,
miR-210↓,

670- EGCG,    Epigallocatechin-3-gallate and its nanoformulation in cervical cancer therapy: the role of genes, MicroRNA and DNA methylation patterns
- Review, NA, NA
TumCCA↑, EGCG promoted G1 phase arrest
P53↑,
ERK↓, EGCG inactivated ERK1/2 protein kinases
EGFR↓,
p‑ERK↑,
VEGF↓,
Hif1a↓,
miR-203↓, in CA33 cells only
miR-210↑,

680- EGCG,    Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea
- Review, NA, NA
NF-kB↓,
STAT3↓,
PI3K↓,
HGF/c-Met↓,
Akt↓,
ERK↓,
MAPK↓,
AR↓,
Casp↑,
Ki-67↓,
PARP↑,
Bcl-2↓,
BAX↑,
PCNA↓,
p27↑,
P21↑,

682- EGCG,    Suppressive Effects of EGCG on Cervical Cancer
- Review, NA, NA
E7↓,
E6↓,
PI3K/Akt↓,
P53↑,
p27↑,
P21↑,
CDK2↓,
mTOR↓,
HIF-1↓,
IGF-1↓,
EGFR↓,
ERK↓, ERK1/2
VEGF↓,

81- QC,  EGCG,    Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea
- in-vivo, Pca, NA
COMT↓,
MRP1↓,
Ki-67↓,
Bax:Bcl2↑,
AR↓,
Akt↓,
p‑ERK↓, ERK1/2
COMT↓,
eff↑, Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 10

Results for Effect on Cancer/Diseased Cells:
Akt↓,4,   p‑Akt↓,1,   AP-1↓,1,   Apoptosis↑,2,   AR↓,2,   BAX↑,2,   Bax:Bcl2↑,1,   Bcl-2↓,2,   Bcl-xL↓,1,   Casp↑,1,   cl‑Casp3↑,1,   CDK2↓,1,   COMT↓,2,   COX2↓,1,   CTR1↑,1,   cycD1↓,1,   DNAdam↑,1,   E6↓,1,   E7↓,1,   eff↑,1,   EGFR↓,4,   ER-α36↓,1,   ERK↓,8,   ERK↑,1,   p‑ERK↓,1,   p‑ERK↑,1,   GlucoseCon↓,1,   Glycolysis↓,2,   HER2/EBBR2↓,1,   HGF/c-Met↓,1,   HIF-1↓,1,   Hif1a↓,2,   HK2↓,2,   HSP27↓,1,   IGF-1↓,2,   IL1β↓,1,   Jun↓,1,   JWA↑,1,   Ki-67↓,2,   lactateProd↓,1,   MAPK↓,2,   miR-203↓,1,   miR-210↓,1,   miR-210↑,1,   MMP2↓,1,   MMPs↓,1,   MRP1↓,1,   mTOR↓,1,   necrosis↑,1,   NF-kB↓,5,   P-gp↓,1,   P21↑,2,   p27↑,2,   p38↓,1,   p38↑,1,   P53↑,3,   PARP↑,1,   PCNA↓,1,   PI3K↓,1,   PI3K/Akt↓,1,   p‑pRB↓,1,   Pyruv↓,1,   Raf↓,1,   RAS↓,1,   ROS↑,2,   Sp1/3/4↓,1,   STAT3↓,1,   TNF-α↓,1,   TumAuto↑,1,   TumCCA↑,2,   TumCP↓,1,   VEGF↓,4,   Vim↓,1,   Warburg↓,1,   β-catenin/ZEB1↓,2,  
Total Targets: 75

Results for Effect on Normal Cells:
BioEnh↑,1,  
Total Targets: 1

Scientific Paper Hit Count for: ERK, ERK signaling
10 EGCG (Epigallocatechin Gallate)
1 Curcumin
1 Piperine
1 Quercetin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:73  Target#:105  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page