condition found tbRes List
EGCG, EGCG (Epigallocatechin Gallate): Click to Expand ⟱
Features:
EGCG (Epigallocatechin Gallate) is found in green tea. 100 times more effective than Vitamin C and 25 times more effective than Vitamin E at protecting cells from damage associated with oxidative stress.
EGCG Epigallocatechin Gallate (Green Tea) -Catechin
Summary:
1. Concentration is a factor that could determine whether green tea polyphenols act as antioxidants or pro-oxidants.
2. Poor bioavailability: taking EGCG capsules without food was better.
3. Cancer dosage 4g/day (2g twice per day)? with curcumin may help (another ref says 700–2100 mg/d)
4. EGCG is susceptible to oxidative degradation.
5. “As for the pH level, the acidic environments enhance the stability of EGCG”.
6. “EGCG may enhance nanoparticle uptake by tumor cells”
7. Might be iron chelator (removing iron from cancer cells)
8. Claimed as synergistic effect with chemotherapy ( cisplatin, bleomycin, gemcitabine.
9. May suppress glucose metabolism, interfere with VEGF, downregulate NF-κB and MMP-9, down-regulation of androgen-regulated miRNA-21.
10. Take with red pepper powder, Capsicum ratio 25:1 (based on half life, they did every 4 hr) (chili pepper vanilloid capsaicin).
11. EGCG mediated ROS formation can upregulate CTR1 expression via the ERK1/2/NEAT1 pathway, which can increase the intake of chemotherapeutic drugs such as cisplatin in NSCLC cells and act as a chemosensitizer [58]
12. Matcha green tea has highest EGCG (2-3X) because consuming leaf.
13. EGCG is an ENOX2 inhibitor.
14. Nrf2 activator in both cancer and normal cells. This example of lung cancer show both directions in different cell lines, but both toward optimim level.
Biological activity, EGCG has been reported to exhibit a range of effects, including:
    Antioxidant activity: 10-50 μM
     Anti-inflammatory activity: 20-50 μM
     Anticancer activity: 50-100 μM
     Cardiovascular health: 20-50 μM
     Neuroprotective activity: 10-50 μM

Drinking a cup (or two cups) of green tea (in which one might ingest roughly 50–100 mg of EGCG from brewed tea) generally results in peak plasma EGCG concentrations in the range of approximately 0.1 to 0.6 μM.

With higher, supplement-type doses (e.g., oral doses in the 500 mg–800 mg range that are sometimes studied for clinical benefits), peak plasma concentrations in humans can reach the low micromolar range, often reported around ~1–2 μM and in some cases up to 5 μM.

Reported values can range from about 25–50 mg of EGCG per gram of matcha powder.
In cases where the matcha is exceptionally catechin-rich, the content could reach 200–250 mg or more in 5 g.

-Peak plasma concentration roughly 1 to 2 hours after oral ingestion.
-Elimination half-life of EGCG in plasma is commonly reported to be in the range of about 3 to 5 hours.

Supplemental EGCG
Dose (mg)   ≈ Peak Plasma EGCG (µM)
~50 mg          ≈ 0.1–0.3 µM
~100 mg         ≈ 0.2–0.6 µM
~250 mg         ≈ 0.5–1.0 µM
~500 mg         ≈ 1–2 µM
~800 mg or higher  ≈ 1–5 µM

50mg of EGCG in 1g of matcha tea(1/2 teaspoon)

Studies on green tea extracts have employed doses roughly equivalent to 300–800 mg/day of EGCG. Excessive doses can cause liver toxicity in some cases.

Methods to improve bioavailability
-Lipid-based carriers or nanoemulsions
-Polymer-based nanoparticles or encapsulation
-Co-administration with ascorbic acid (vitamin C)
-Co-administration of adjuvants like piperine (perhaps sunflower lecithin and chitosan) -Using multiple smaller doses rather than one large single dose.
-Taking EGCG on an empty stomach or under fasting conditions, or aligning dosing with optimal pH conditions in the GI tract, may improve its absorption.(acidic environment is generally more favorable for its stability and absorption).
– EGCG is more stable under acidic conditions. In the stomach, where the pH is typically around 1.5 to 3.5, EGCG is less prone to degradation compared to the more neutral or basic environments of the small intestine.
- At neutral (around pH 7) or alkaline pH, EGCG undergoes auto-oxidation, reducing the effective concentration available for absorption.
– Although the stomach’s acidic pH helps maintain EGCG’s stability, most absorption occurs in the small intestine, where the pH is closer to neutral.
– To counterbalance the inherent instability in the intestine, strategies such as co-administration of pH-modifying agents (like vitamin C) are sometimes used. These agents help to maintain a slightly acidic environment in the gut microenvironment, potentially improving EGCG stability during its transit and absorption.
– The use of acidifiers or buffering agents in supplements may help preserve EGCG until it reaches the absorption sites.

-Note half-life 3–5 hours.
- low BioAv 1%? despite its limited absorption, it is rapidly disseminated throughout the body
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Does NOT Lower AntiOxidant defense in Cancer Cells: NRF2↑, TrxR↓**, SOD, GSH Catalase HO1 GPx
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, Notch↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective(possible damage at high dose), CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Sp1/3/4, Specificity Protein: Click to Expand ⟱
Source:
Type:
SP2 (Specificity Protein 2) and SP3 (Specificity Protein 3) are also members of the Sp/KLF (Sp1/Krüppel-like factor) family of transcription factors, similar to SP1. They share some functional similarities but also have distinct roles in cellular processes and cancer biology.
-Sp proteins are a family of transcription factors that play a crucial role in regulating gene expression.
-SP1 is often overexpressed in various types of cancer, including breast, prostate, and lung cancers. However, expression levels of Sp in normal cells and tissues are low to undetectable.

SP inhibitors:
-Curcumin, Resveratrol, EGCG, Genistein, Piperlongumine, Betulinic acid



Scientific Papers found: Click to Expand⟱
2992- EGCG,    Effects of Epigallocatechin-3-Gallate on Matrix Metalloproteinases in Terms of Its Anticancer Activity
- Review, Var, NA
AP-1↓, MMPs have binding sites for at least one transcription factor of AP-1, Sp1, and NF-κB, and EGCG can downregulate these transcription factors through signaling pathways mediated by reactive oxygen species
Sp1/3/4↓,
NF-kB↓,
ERK↓, EGCG can also decrease nuclear ERK, p38, heat shock protein-27 (Hsp27), and β-catenin levels, leading to suppression of MMPs’ expression.
P-gp↓,
HSP27↓,
β-catenin/ZEB1↓,
MMPs↓,
TNF-α↓, suppress the production of inflammatory cytokines such as TNFα and IL-1β.
IL1β↓,
MMP2↓, EGCG inhibited MMP2 secretion in glioblastoma cells.

2993- EGCG,    Tea polyphenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells
- in-vitro, Pca, LNCaP
TumCG↓, EGCG, inhibited LNCaP cell growth and the expression of androgen regulated PSA and hK2 genes.
PSA↓,
HK2↓,
AR↓, decrease in androgen receptor protein with treatments of the tea polyphenols EGCG, GCG and theaflavins.
Sp1/3/4↓, Sp1 is the target for the tea polyphenols because treatments of EGCG decreased the expression, DNA binding activity and transactivation activity of Sp1 protein.

2994- EGCG,    Nano-Engineered Epigallocatechin Gallate (EGCG) Delivery Systems: Overcoming Bioavailability Barriers to Unlock Clinical Potential in Cancer Therapy
- Review, Var, NA
BioAv↓, Despite its therapeutic promise, clinical application is constrained by rapid metabolism, poor bioavailability, and inconsistent biodistribution.
NF-kB↓, EGCG modulates oncogenic pathways via NF-κB suppression, caspase activation, and MMP-9 downregulation, demonstrating efficacy across diverse cancer types.
Casp↑,
MMP9↑,
Sp1/3/4↑, marked decrease in Sp1 activity

643- EGCG,    New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate
- Analysis, NA, NA
H2O2↑,
Fenton↑,
PDGFR-BB↑,
EGFR↓, EGCG inhibits activities of EGFR, VEGFR, and IGFR
VEGFR2↓,
IGFR↓,
Ca+2↑, EGCG elevates cytosolic Ca2+ levels
NO↑, EGCG-stimulated elevation of cytosolic calcium contributes to NO production by binding to calmodulin
Sp1/3/4↓,
NF-kB↓,
AP-1↓,
STAT1↓,
STAT3↓,
FOXO↓, FOXO1
mtDam↑,
TumAuto↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
AP-1↓,2,   AR↓,1,   BioAv↓,1,   Ca+2↑,1,   Casp↑,1,   EGFR↓,1,   ERK↓,1,   Fenton↑,1,   FOXO↓,1,   H2O2↑,1,   HK2↓,1,   HSP27↓,1,   IGFR↓,1,   IL1β↓,1,   MMP2↓,1,   MMP9↑,1,   MMPs↓,1,   mtDam↑,1,   NF-kB↓,3,   NO↑,1,   P-gp↓,1,   PDGFR-BB↑,1,   PSA↓,1,   Sp1/3/4↓,3,   Sp1/3/4↑,1,   STAT1↓,1,   STAT3↓,1,   TNF-α↓,1,   TumAuto↑,1,   TumCG↓,1,   VEGFR2↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 32

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: Sp1/3/4, Specificity Protein
4 EGCG (Epigallocatechin Gallate)
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:73  Target#:506  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page