condition found tbRes List
EGCG, EGCG (Epigallocatechin Gallate): Click to Expand ⟱
Features:
EGCG (Epigallocatechin Gallate) is found in green tea. 100 times more effective than Vitamin C and 25 times more effective than Vitamin E at protecting cells from damage associated with oxidative stress.
EGCG Epigallocatechin Gallate (Green Tea) -Catechin
Summary:
1. Concentration is a factor that could determine whether green tea polyphenols act as antioxidants or pro-oxidants.
2. Poor bioavailability: taking EGCG capsules without food was better.
3. Cancer dosage 4g/day (2g twice per day)? with curcumin may help (another ref says 700–2100 mg/d)
4. EGCG is susceptible to oxidative degradation.
5. “As for the pH level, the acidic environments enhance the stability of EGCG”.
6. “EGCG may enhance nanoparticle uptake by tumor cells”
7. Might be iron chelator (removing iron from cancer cells)
8. Claimed as synergistic effect with chemotherapy ( cisplatin, bleomycin, gemcitabine.
9. May suppress glucose metabolism, interfere with VEGF, downregulate NF-κB and MMP-9, down-regulation of androgen-regulated miRNA-21.
10. Take with red pepper powder, Capsicum ratio 25:1 (based on half life, they did every 4 hr) (chili pepper vanilloid capsaicin).
11. EGCG mediated ROS formation can upregulate CTR1 expression via the ERK1/2/NEAT1 pathway, which can increase the intake of chemotherapeutic drugs such as cisplatin in NSCLC cells and act as a chemosensitizer [58]
12. Matcha green tea has highest EGCG (2-3X) because consuming leaf.
13. EGCG is an ENOX2 inhibitor.
14. Nrf2 activator in both cancer and normal cells. This example of lung cancer show both directions in different cell lines, but both toward optimim level.
Biological activity, EGCG has been reported to exhibit a range of effects, including:
    Antioxidant activity: 10-50 μM
     Anti-inflammatory activity: 20-50 μM
     Anticancer activity: 50-100 μM
     Cardiovascular health: 20-50 μM
     Neuroprotective activity: 10-50 μM

Drinking a cup (or two cups) of green tea (in which one might ingest roughly 50–100 mg of EGCG from brewed tea) generally results in peak plasma EGCG concentrations in the range of approximately 0.1 to 0.6 μM.

With higher, supplement-type doses (e.g., oral doses in the 500 mg–800 mg range that are sometimes studied for clinical benefits), peak plasma concentrations in humans can reach the low micromolar range, often reported around ~1–2 μM and in some cases up to 5 μM.

Reported values can range from about 25–50 mg of EGCG per gram of matcha powder.
In cases where the matcha is exceptionally catechin-rich, the content could reach 200–250 mg or more in 5 g.

-Peak plasma concentration roughly 1 to 2 hours after oral ingestion.
-Elimination half-life of EGCG in plasma is commonly reported to be in the range of about 3 to 5 hours.

Supplemental EGCG
Dose (mg)   ≈ Peak Plasma EGCG (µM)
~50 mg          ≈ 0.1–0.3 µM
~100 mg         ≈ 0.2–0.6 µM
~250 mg         ≈ 0.5–1.0 µM
~500 mg         ≈ 1–2 µM
~800 mg or higher  ≈ 1–5 µM

50mg of EGCG in 1g of matcha tea(1/2 teaspoon)

Studies on green tea extracts have employed doses roughly equivalent to 300–800 mg/day of EGCG. Excessive doses can cause liver toxicity in some cases.

Methods to improve bioavailability
-Lipid-based carriers or nanoemulsions
-Polymer-based nanoparticles or encapsulation
-Co-administration with ascorbic acid (vitamin C)
-Co-administration of adjuvants like piperine (perhaps sunflower lecithin and chitosan) -Using multiple smaller doses rather than one large single dose.
-Taking EGCG on an empty stomach or under fasting conditions, or aligning dosing with optimal pH conditions in the GI tract, may improve its absorption.(acidic environment is generally more favorable for its stability and absorption).
– EGCG is more stable under acidic conditions. In the stomach, where the pH is typically around 1.5 to 3.5, EGCG is less prone to degradation compared to the more neutral or basic environments of the small intestine.
- At neutral (around pH 7) or alkaline pH, EGCG undergoes auto-oxidation, reducing the effective concentration available for absorption.
– Although the stomach’s acidic pH helps maintain EGCG’s stability, most absorption occurs in the small intestine, where the pH is closer to neutral.
– To counterbalance the inherent instability in the intestine, strategies such as co-administration of pH-modifying agents (like vitamin C) are sometimes used. These agents help to maintain a slightly acidic environment in the gut microenvironment, potentially improving EGCG stability during its transit and absorption.
– The use of acidifiers or buffering agents in supplements may help preserve EGCG until it reaches the absorption sites.

-Note half-life 3–5 hours.
- low BioAv 1%? despite its limited absorption, it is rapidly disseminated throughout the body
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Does NOT Lower AntiOxidant defense in Cancer Cells: NRF2↑, TrxR↓**, SOD, GSH Catalase HO1 GPx
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, Notch↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective(possible damage at high dose), CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


HDAC, Histone deacetylases: Click to Expand ⟱
Source:
Type:
Enzymes involved in regulating gene expression by removing acetyl groups from histones, the proteins around which DNA is wrapped.
-Many cancers exhibit altered expression levels of HDACs, which can contribute to the dysregulation of genes involved in cell growth, survival, and differentiation.
-HDACs can repress the expression of tumor suppressor genes, leading to uncontrolled cell proliferation and survival. This repression can be a key factor in the development and progression of cancer.
-HDAC inhibitors (HDACi) have been developed and are being investigated for their ability to reactivate silenced genes, induce cell cycle arrest, and promote apoptosis in cancer cells.
-HDAC1, HDAC2): Often overexpressed in various cancers, including breast, prostate, and colorectal cancers. Their overexpression is associated with poor prognosis.
-HDAC4, HDAC5): These may have both oncogenic and tumor-suppressive roles depending on the context and cancer type.
-While HDACs are not classified as traditional oncogenes, their overexpression and activity can contribute to oncogenic processes.
-HDAC inhibitor works by preventing the removal of acetyl groups from histones, thereby modulating gene expression, influencing cell behavior, and potentially reversing aberrant gene silencing seen in various diseases.
-HDAC inhibitors can help reactivate these genes, thereby inhibiting growth and inducing apoptosis in cancer cells.


Scientific Papers found: Click to Expand⟱
3201- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*AntiCan↑, EGCG’s therapeutic potential in preventing and managing a range of chronic conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes
*cardioP↑,
*neuroP↑,
*BioAv↝, Factors such as fasting, storage conditions, albumin levels, vitamin C, fish oil, and piperine have been shown to affect plasma concentrations and the overall bioavailability of EGCG
*BioAv↓, Conversely, bioavailability is reduced by processes such as air oxidation, sulfation, glucuronidation, gastrointestinal degradation, and interactions with Ca2+, Mg2+, and trace metals,
*BioAv↓, EGCG’s oral bioavailability is generally low, with marked differences observed across species, for example, bioavailability rates of 26.5% in CF-1 mice and just 1.6% in Sprague Dawley rats
*Dose↝, plasma concentrations exceeded 1 μM only when doses of 1 g or higher were administered.
*Half-Life↝, Specifically, a dose of 1600 mg yielded a Cmax of 3392 ng/mL (range: 130–3392 ng/mL), with peak levels observed between 1.3 and 2.2 h, AUC (0–∞) values ranging from 442 to 10,368 ng·h/mL, and a half-life (t1/2z) of 1.9 to 4.6 h.
*BioAv↑, Studies on the distribution of EGCG have revealed that, despite its limited absorption, it is rapidly disseminated throughout the body or quickly converted into metabolites
*BBB↑, Additionally, EGCG can cross the blood–brain barrier, allowing it to reach the brain
*hepatoP↓, Several studies have documented liver damage linked to green tea consumption [48,49,50,51,52,53].
*other↓, EGCG has also been shown to inhibit the intestinal absorption of non-heme iron in a dose-dependent manner in a controlled clinical trial
*Inflam↓, EGCG has been widely recognized for its anti-inflammatory effects
*NF-kB↓, EGCG has been shown to suppress NF-κB activation, inhibit its nuclear translocation, and block AP-1 activity
*AP-1↓,
*iNOS↓, downregulation of pro-inflammatory enzymes like iNOS and COX-2 and scavenging of ROS/RNS, including nitric oxide and peroxynitrite
*COX2↓,
*ROS↓,
*RNS↓,
*IL8↓, EGCG has been shown to suppress airway inflammation by reducing IL-8 release, a cytokine involved in neutrophil aggregation and ROS production.
*JAK↓, EGCG blocks the JAK1/2 signaling pathway
*PDGFR-BB↓, downregulate PDGFR and IGF-1R gene expression
*IGF-1R↓,
*MMP2↓, reduce MMP-2 mRNA expression
*P53↓, downregulation of the p53-p21 signaling pathway and the enhanced expression of Nrf2
*NRF2↑,
*TNF-α↓, 25 to 100 μM reduced the levels of TNF-α, IL-6, and ROS while enhancing the expression of E2F2 and superoxide dismutases (SOD1 and SOD2), enzymes vital for cellular antioxidant defense.
*IL6↓,
*E2Fs↑,
*SOD1↑,
*SOD2↑,
Casp3↑, EGCG has been shown to activate key apoptotic pathways, such as caspase-3 activation, cytochrome c release, and PARP cleavage, in various cell models, including PC12 cells exposed to oxidative stress
Cyt‑c↑,
PARP↑,
DNMTs↓, (1) the inhibition of DNA hypermethylation by blocking DNA methyltransferase (DNMT)
Telomerase↓, (2) the repression of telomerase activity;
Hif1a↓, (3) the suppression of angiogenesis via the inhibition of HIF-1α and NF-κB;
MMPs↓, (4) the prevention of cellular metastasis by inhibiting matrix metalloproteinases (MMPs);
BAX↑, (5) the promotion of apoptosis through the activation of pro-apoptotic proteins like BAX and BAK
Bak↑,
Bcl-2↓, while downregulating anti-apoptotic proteins like BCL-2 and BCL-XL;
Bcl-xL↓,
P53↑, (6) the upregulation of tumor suppressor genes such as p53 and PTEN;
PTEN↑,
TumCP↓, (7) the inhibition of inflammation and proliferation via NF-κB suppression;
MAPK↓, (8) anti-proliferative activity through the modulation of MAPK and IGF1R pathways
HGF/c-Met↓, EGCG inhibits hepatocyte growth factor (HGF), which is involved in tumor migration and invasion
TIMP1↑, EGCG has also been shown to influence the expression of tissue inhibitors of metalloproteinases (TIMPs) and MMPs, which are involved in tumorigenesis
HDAC↓, nhibition of UVB-induced DNA hypomethylation and modulation of DNMT and histone deacetylase (HDAC) activities
MMP9↓, inhibiting MMPs such as MMP-2 and MMP-9
uPA↓, EGCG may block urokinase-like plasminogen activator (uPA), a protease involved in cancer progression
GlutMet↓, EGCG can exert antitumor effects by inhibiting glycolytic enzymes, reducing glucose metabolism, and further suppressing cancer-cell growth
ChemoSen↑, EGCG’s combination with standard chemotherapy drugs may enhance their efficacy through additive or synergistic effects, while also mitigating chemotherapy-related side effects
chemoP↑,

3230- EGCG,    Green Tea Polyphenol Epigallocatechin 3-Gallate, Contributes to the Degradation of DNMT3A and HDAC3 in HCT 116 Human Colon Cancer Cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29
HDAC↓, HDAC and DNMT protein expression was reduced when methylation-sensitive HCT 116 human colon cancer cells was treated with EGCG, but was relatively stable in the HT-29 cell line.
DNMTs↓,

3231- EGCG,    Epigallocatechin-3-gallate restores mitochondrial homeostasis impairment by inhibiting HDAC1-mediated NRF1 histone deacetylation in cardiac hypertrophy
- in-vitro, Nor, NA
*HDAC↓, Administration of epigallocatechin-3-gallate (EGCG), an inhibitor of HDAC1, restored cardiac function, decreased heart/body weight and fibrosis
*cardioP↑,
*Nrf1↑, EGCG upregulated both NRF1 and PGC-1α in vitro
*PGC-1α↓,

3234- EGCG,  Rad,    EGCG, a tea polyphenol, as a potential mitigator of hematopoietic radiation injury in mice
- in-vivo, Nor, NA
*DNMTs↓, EGCG (epigallocatechin gallate), a tea polyphenol with known DNMT inhibitory property, in C57 Bl/6 mice model.
*radioP↑, EGCG reduced cytogenetic damage to bone marrow cells in radiation exposed mice significantly
*HDAC↑, ELISA assay with bone marrow cell lysates showed EGCG as an inhibitor of HDAC activity

3235- EGCG,    (-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells
- in-vivo, Cerv, HeLa
DNMTs↓, In the present study, time-dependent EGCG-treated HeLa cells were found to have a significant reduction in the enzymatic activity of DNMT and HDAC
HDAC↓,

3236- EGCG,  BA,    Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate
- in-vitro, Colon, RKO - in-vitro, Colon, HCT116 - in-vitro, Colon, HT29
Apoptosis↑, combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells.
TumCCA?,
HDAC1↓, decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines.
DNMT1↓,
survivin↓,
HDAC↓,
P21↑, induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65.
NF-kB↑,
γH2AX↑, An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels
ac‑H3↑, induction of histone H3 hyperacetylation was also observed with combination treatment.
DNAdam↑,

3237- EGCG,    (-)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer's disease model mice by upregulating neprilysin expression
- in-vivo, AD, NA
*HDAC↓, We previously reported that (-)-epigallocatechin-3-gallate (EGCG) acts as an HDAC inhibitor
*Aβ↓, Here, we demonstrate that EGCG reduced β-amyloid (Aβ) accumulation in vitro and rescued cognitive deterioration in senescence-accelerated mice
cognitive↑,

3238- EGCG,    Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications
- Review, Var, NA
Telomerase↓, EGCG stimulates telomere fragmentation through inhibiting telomerase activity.
DNMTs↓, EGCG reduced DNMTs,
cycD1↓, EGCG also reduced the protein expression of cyclin D1, cyclin E, CDK2, CDK4, and CDK6. EGCG also inhibited the activity of CDK2 and CDK4, and caused Rb hypophosphorylation
cycE↓,
CDK2↓,
CDK4↓,
CDK6↓,
HATs↓, EGCG can inhibit certain biomedically important molecular targets such as DNMTs, HATs, and HDACs
HDAC↓,
selectivity↑, EGCG has shown higher cytotoxicity in cancer cells than in their normal counterparts.
uPA↓, EGCG blocks urokinase, an enzyme which is essential for cancer growth and metastasis
NF-kB↓, EGCG inhibits NFκB and expression of TNF-α, reduces cancer promotion
TNF-α↓,
*ROS↓, It acts as strong ROS scavenger and antioxidant,
*antiOx↑,
Hif1a↓, ↓ HIF-1α; ↓ VEGF; ↓ VEGFR1;
VEGF↓,
MMP2↓, ↓ MMP-2; ↓ MMP-9; ↓ FAK;
MMP9↓,
FAK↓,
TIMP2↑, TIMP-2; ↑
Mcl-1↓, ↓ Mcl-1; ↓ survivin; ↓ XIAP
survivin↓,
XIAP↓,
PCNA↓, ↓ PCNA; ↑ 16; ↑ p18; ↑ p21; ↑ p27; ↑ pRb; ↑ p53; ↑ mdm2
p16↑,
P21↑,
p27↑,
pRB↑,
P53↑,
MDM2↑,
ROS↑, ↑ ROS; ↑ caspase-3; ↑ caspase-8; ↑ caspase-9; ↑ cytochrome c; ↑ Smac/DIABLO; ↓↑ Bax; Z Bak; ↓ cleaved PPAR;
Casp3↑,
Casp8↑,
Casp9↑,
Cyt‑c↑,
Diablo↑,
BAX⇅,
cl‑PPARα↓,
PDGF↓, ↓ PDGF; ↓ PDGFRb; ↓ EGFR;
EGFR↓,
FOXO↑, activated FOXO transcription factors
AP-1↓, The inhibition of AP-1 activity by EGCG was associated with inhibition of JNK activation but not ERK activation.
JNK↓,
COX2↓, EGCG reduces the activity of COX-2 following interleukin-1A stimulation of human chondrocytes
angioG↓, EGCG inhibits angiogenesis by enhancing FOXO transcriptional activity

3229- EGCG,    Epigallocatechin-3-gallate (EGCG) Alters Histone Acetylation and Methylation and Impacts Chromatin Architecture Profile in Human Endothelial Cells
- in-vitro, Nor, HMEC - in-vitro, Nor, HUVECs
HDAC↓, We also found that the catechin acts as an HDAC inhibitor in cellular and cell-free models

672- EGCG,    Molecular Targets of Epigallocatechin—Gallate (EGCG): A Special Focus on Signal Transduction and Cancer
- Review, NA, NA
DNMT1↓,
HDAC↓, HDAC1, HDAC2
G9a↓,
PRC2↓,
DNMT3A↓,
67LR↓, anti-proliferative action of EGCG is mediated by the binding to 67LR, whose expression is increased in tumour cells.
Apoptosis↑,
TumCCA↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 10

Results for Effect on Cancer/Diseased Cells:
67LR↓,1,   angioG↓,1,   AP-1↓,1,   Apoptosis↑,2,   Bak↑,1,   BAX↑,1,   BAX⇅,1,   Bcl-2↓,1,   Bcl-xL↓,1,   Casp3↑,2,   Casp8↑,1,   Casp9↑,1,   CDK2↓,1,   CDK4↓,1,   CDK6↓,1,   chemoP↑,1,   ChemoSen↑,1,   cognitive↑,1,   COX2↓,1,   cycD1↓,1,   cycE↓,1,   Cyt‑c↑,2,   Diablo↑,1,   DNAdam↑,1,   DNMT1↓,2,   DNMT3A↓,1,   DNMTs↓,4,   EGFR↓,1,   FAK↓,1,   FOXO↑,1,   G9a↓,1,   GlutMet↓,1,   ac‑H3↑,1,   HATs↓,1,   HDAC↓,7,   HDAC1↓,1,   HGF/c-Met↓,1,   Hif1a↓,2,   JNK↓,1,   MAPK↓,1,   Mcl-1↓,1,   MDM2↑,1,   MMP2↓,1,   MMP9↓,2,   MMPs↓,1,   NF-kB↓,1,   NF-kB↑,1,   p16↑,1,   P21↑,2,   p27↑,1,   P53↑,2,   PARP↑,1,   PCNA↓,1,   PDGF↓,1,   cl‑PPARα↓,1,   pRB↑,1,   PRC2↓,1,   PTEN↑,1,   ROS↑,1,   selectivity↑,1,   survivin↓,2,   Telomerase↓,2,   TIMP1↑,1,   TIMP2↑,1,   TNF-α↓,1,   TumCCA?,1,   TumCCA↑,1,   TumCP↓,1,   uPA↓,2,   VEGF↓,1,   XIAP↓,1,   γH2AX↑,1,  
Total Targets: 72

Results for Effect on Normal Cells:
AntiCan↑,1,   antiOx↑,1,   AP-1↓,1,   Aβ↓,1,   BBB↑,1,   BioAv↓,2,   BioAv↑,1,   BioAv↝,1,   cardioP↑,2,   COX2↓,1,   DNMTs↓,1,   Dose↝,1,   E2Fs↑,1,   Half-Life↝,1,   HDAC↓,2,   HDAC↑,1,   hepatoP↓,1,   IGF-1R↓,1,   IL6↓,1,   IL8↓,1,   Inflam↓,1,   iNOS↓,1,   JAK↓,1,   MMP2↓,1,   neuroP↑,1,   NF-kB↓,1,   Nrf1↑,1,   NRF2↑,1,   other↓,1,   P53↓,1,   PDGFR-BB↓,1,   PGC-1α↓,1,   radioP↑,1,   RNS↓,1,   ROS↓,2,   SOD1↑,1,   SOD2↑,1,   TNF-α↓,1,  
Total Targets: 38

Scientific Paper Hit Count for: HDAC, Histone deacetylases
10 EGCG (Epigallocatechin Gallate)
1 Radiotherapy/Radiation
1 Butyrate
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:73  Target#:140  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page