condition found
Features: |
EGCG (Epigallocatechin Gallate) is found in green tea. 100 times more effective than Vitamin C and 25 times more effective than Vitamin E at protecting cells from damage associated with oxidative stress. EGCG Epigallocatechin Gallate (Green Tea) -Catechin Summary: 1. Concentration is a factor that could determine whether green tea polyphenols act as antioxidants or pro-oxidants. 2. Poor bioavailability: taking EGCG capsules without food was better. 3. Cancer dosage 4g/day (2g twice per day)? with curcumin may help (another ref says 700–2100 mg/d) 4. EGCG is susceptible to oxidative degradation. 5. “As for the pH level, the acidic environments enhance the stability of EGCG”. 6. “EGCG may enhance nanoparticle uptake by tumor cells” 7. Might be iron chelator (removing iron from cancer cells) 8. Claimed as synergistic effect with chemotherapy ( cisplatin, bleomycin, gemcitabine. 9. May suppress glucose metabolism, interfere with VEGF, downregulate NF-κB and MMP-9, down-regulation of androgen-regulated miRNA-21. 10. Take with red pepper powder, Capsicum ratio 25:1 (based on half life, they did every 4 hr) (chili pepper vanilloid capsaicin). 11. EGCG mediated ROS formation can upregulate CTR1 expression via the ERK1/2/NEAT1 pathway, which can increase the intake of chemotherapeutic drugs such as cisplatin in NSCLC cells and act as a chemosensitizer [58] 12. Matcha green tea has highest EGCG (2-3X) because consuming leaf. 13. EGCG is an ENOX2 inhibitor. 14. Nrf2 activator in both cancer and normal cells. This example of lung cancer show both directions in different cell lines, but both toward optimim level. Biological activity, EGCG has been reported to exhibit a range of effects, including: Antioxidant activity: 10-50 μM Anti-inflammatory activity: 20-50 μM Anticancer activity: 50-100 μM Cardiovascular health: 20-50 μM Neuroprotective activity: 10-50 μM Drinking a cup (or two cups) of green tea (in which one might ingest roughly 50–100 mg of EGCG from brewed tea) generally results in peak plasma EGCG concentrations in the range of approximately 0.1 to 0.6 μM. With higher, supplement-type doses (e.g., oral doses in the 500 mg–800 mg range that are sometimes studied for clinical benefits), peak plasma concentrations in humans can reach the low micromolar range, often reported around ~1–2 μM and in some cases up to 5 μM. Reported values can range from about 25–50 mg of EGCG per gram of matcha powder. In cases where the matcha is exceptionally catechin-rich, the content could reach 200–250 mg or more in 5 g. -Peak plasma concentration roughly 1 to 2 hours after oral ingestion. -Elimination half-life of EGCG in plasma is commonly reported to be in the range of about 3 to 5 hours. Supplemental EGCG Dose (mg) ≈ Peak Plasma EGCG (µM) ~50 mg ≈ 0.1–0.3 µM ~100 mg ≈ 0.2–0.6 µM ~250 mg ≈ 0.5–1.0 µM ~500 mg ≈ 1–2 µM ~800 mg or higher ≈ 1–5 µM 50mg of EGCG in 1g of matcha tea(1/2 teaspoon) Studies on green tea extracts have employed doses roughly equivalent to 300–800 mg/day of EGCG. Excessive doses can cause liver toxicity in some cases. Methods to improve bioavailability -Lipid-based carriers or nanoemulsions -Polymer-based nanoparticles or encapsulation -Co-administration with ascorbic acid (vitamin C) -Co-administration of adjuvants like piperine (perhaps sunflower lecithin and chitosan) -Using multiple smaller doses rather than one large single dose. -Taking EGCG on an empty stomach or under fasting conditions, or aligning dosing with optimal pH conditions in the GI tract, may improve its absorption.(acidic environment is generally more favorable for its stability and absorption). – EGCG is more stable under acidic conditions. In the stomach, where the pH is typically around 1.5 to 3.5, EGCG is less prone to degradation compared to the more neutral or basic environments of the small intestine. - At neutral (around pH 7) or alkaline pH, EGCG undergoes auto-oxidation, reducing the effective concentration available for absorption. – Although the stomach’s acidic pH helps maintain EGCG’s stability, most absorption occurs in the small intestine, where the pH is closer to neutral. – To counterbalance the inherent instability in the intestine, strategies such as co-administration of pH-modifying agents (like vitamin C) are sometimes used. These agents help to maintain a slightly acidic environment in the gut microenvironment, potentially improving EGCG stability during its transit and absorption. – The use of acidifiers or buffering agents in supplements may help preserve EGCG until it reaches the absorption sites. -Note half-life 3–5 hours. - low BioAv 1%? despite its limited absorption, it is rapidly disseminated throughout the body Pathways: - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Does NOT Lower AntiOxidant defense in Cancer Cells: NRF2↑, TrxR↓**, SOD, GSH Catalase HO1 GPx - Raises AntiOxidant defense in Normal Cells: ROS↓">ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, Notch↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective(possible damage at high dose), CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: HalifaxProj (inhibit) |
Type: |
Reactive oxygen species (ROS) are highly reactive molecules that contain oxygen and can lead to oxidative stress in cells. They play a dual role in cancer biology, acting as both promoters and suppressors of cancer. ROS can cause oxidative damage to DNA, leading to mutations that may contribute to cancer initiation and progression. So normally you want to inhibit ROS to prevent cell mutations. However excessive ROS can induce apoptosis (programmed cell death) in cancer cells, potentially limiting tumor growth. Chemotherapy typically raises ROS. "Reactive oxygen species (ROS) are two electron reduction products of oxygen, including superoxide anion, hydrogen peroxide, hydroxyl radical, lipid peroxides, protein peroxides and peroxides formed in nucleic acids 1. They are maintained in a dynamic balance by a series of reduction-oxidation (redox) reactions in biological systems and act as signaling molecules to drive cellular regulatory pathways." "During different stages of cancer formation, abnormal ROS levels play paradoxical roles in cell growth and death 8. A physiological concentration of ROS that maintained in equilibrium is necessary for normal cell survival. Ectopic ROS accumulation promotes cell proliferation and consequently induces malignant transformation of normal cells by initiating pathological conversion of physiological signaling networks. Excessive ROS levels lead to cell death by damaging cellular components, including proteins, lipid bilayers, and chromosomes. Therefore, both scavenging abnormally elevated ROS to prevent early neoplasia and facilitating ROS production to specifically kill cancer cells are promising anticancer therapeutic strategies, in spite of their contradictoriness and complexity." "ROS are the collection of derivatives of molecular oxygen that occur in biology, which can be categorized into two types, free radicals and non-radical species. The non-radical species are hydrogen peroxide (H 2O 2 ), organic hydroperoxides (ROOH), singlet molecular oxygen ( 1 O 2 ), electronically excited carbonyl, ozone (O3 ), hypochlorous acid (HOCl, and hypobromous acid HOBr). Free radical species are super-oxide anion radical (O 2•−), hydroxyl radical (•OH), peroxyl radical (ROO•) and alkoxyl radical (RO•) [130]. Any imbalance of ROS can lead to adverse effects. H2 O 2 and O 2 •− are the main redox signalling agents. The cellular concentration of H2 O 2 is about 10−8 M, which is almost a thousand times more than that of O2 •−". "Radicals are molecules with an odd number of electrons in the outer shell [393,394]. A pair of radicals can be formed by breaking a chemical bond or electron transfer between two molecules." Recent investigations have documented that polyphenols with good antioxidant activity may exhibit pro-oxidant activity in the presence of copper ions, which can induce apoptosis in various cancer cell lines but not in normal cells. "We have shown that such cell growth inhibition by polyphenols in cancer cells is reversed by copper-specific sequestering agent neocuproine to a significant extent whereas iron and zinc chelators are relatively ineffective, thus confirming the role of endogenous copper in the cytotoxic action of polyphenols against cancer cells. Therefore, this mechanism of mobilization of endogenous copper." > Ions could be one of the important mechanisms for the cytotoxic action of plant polyphenols against cancer cells and is possibly a common mechanism for all plant polyphenols. In fact, similar results obtained with four different polyphenolic compounds in this study, namely apigenin, luteolin, EGCG, and resveratrol, strengthen this idea. Interestingly, the normal breast epithelial MCF10A cells have earlier been shown to possess no detectable copper as opposed to breast cancer cells [24], which may explain their resistance to polyphenols apigenin- and luteolin-induced growth inhibition as observed here (Fig. 1). We have earlier proposed [25] that this preferential cytotoxicity of plant polyphenols toward cancer cells is explained by the observation made several years earlier, which showed that copper levels in cancer cells are significantly elevated in various malignancies. Thus, because of higher intracellular copper levels in cancer cells, it may be predicted that the cytotoxic concentrations of polyphenols required would be lower in these cells as compared to normal cells." Majority of ROS are produced as a by-product of oxidative phosphorylation, high levels of ROS are detected in almost all cancers. -It is well established that during ER stress, cytosolic calcium released from the ER is taken up by the mitochondrion to stimulate ROS overgeneration and the release of cytochrome c, both of which lead to apoptosis. Note: Products that may raise ROS can be found using this database, by: Filtering on the target of ROS, and selecting the Effect Direction of ↑ Targets to raise ROS (to kill cancer cells): • NADPH oxidases (NOX): NOX enzymes are involved in the production of ROS. -Targeting NOX enzymes can increase ROS levels and induce cancer cell death. -eNOX2 inhibition leads to a high NADH/NAD⁺ ratio which can lead to increased ROS • Mitochondrial complex I: Inhibiting can increase ROS production • P53: Activating p53 can increase ROS levels(by inducing the expression of pro-oxidant genes) • Nrf2: regulates the expression of antioxidant genes. Inhibiting Nrf2 can increase ROS levels • Glutathione (GSH): an antioxidant. Depleting GSH can increase ROS levels • Catalase: Catalase converts H2O2 into H2O+O. Inhibiting catalase can increase ROS levels • SOD1: converts superoxide into hydrogen peroxide. Inhibiting SOD1 can increase ROS levels • PI3K/AKT pathway: regulates cell survival and metabolism. Inhibiting can increase ROS levels • HIF-1α: regulates genes involved in metabolism and angiogenesis. Inhibiting HIF-1α can increase ROS • Glycolysis: Inhibiting glycolysis can increase ROS levels • Fatty acid oxidation: Cancer cells often rely on fatty acid oxidation for energy production. -Inhibiting fatty acid oxidation can increase ROS levels • ER stress: Endoplasmic reticulum (ER) stress can increase ROS levels • Autophagy: process by which cells recycle damaged organelles and proteins. -Inhibiting autophagy can increase ROS levels and induce cancer cell death. • KEAP1/Nrf2 pathway: regulates the expression of antioxidant genes. -Inhibiting KEAP1 or activating Nrf2 can increase ROS levels and induce cancer cell death. • DJ-1: regulates the expression of antioxidant genes. Inhibiting DJ-1 can increase ROS levels • PARK2: regulates the expression of antioxidant genes. Inhibiting PARK2 can increase ROS levels • SIRT1:regulates the expression of antioxidant genes. Inhibiting SIRT1 can increase ROS levels • AMPK: regulates energy metabolism and can increase ROS levels when activated. • mTOR: regulates cell growth and metabolism. Inhibiting mTOR can increase ROS levels • HSP90: regulates protein folding and can increase ROS levels when inhibited. • Proteasome: degrades damaged proteins. Inhibiting the proteasome can increase ROS levels • Lipid peroxidation: a process by which lipids are oxidized, leading to the production of ROS. -Increasing lipid peroxidation can increase ROS levels • Ferroptosis: form of cell death that is regulated by iron and lipid peroxidation. -Increasing ferroptosis can increase ROS levels • Mitochondrial permeability transition pore (mPTP): regulates mitochondrial permeability. -Opening the mPTP can increase ROS levels • BCL-2 family proteins: regulate apoptosis and can increase ROS levels when inhibited. • Caspase-independent cell death: a form of cell death that is regulated by ROS. -Increasing caspase-independent cell death can increase ROS levels • DNA damage response: regulates the repair of DNA damage. Increasing DNA damage can increase ROS • Epigenetic regulation: process by which gene expression is regulated. -Increasing epigenetic regulation can increase ROS levels -PKM2, but not PKM1, can be inhibited by direct oxidation of cysteine 358 as an adaptive response to increased intracellular reactive oxygen species (ROS) ProOxidant Strategy:(inhibit the Melavonate Pathway (likely will also inhibit GPx) -HydroxyCitrate (HCA) found as supplement online and typically used in a dose of about 1.5g/day or more -Atorvastatin typically 40-80mg/day -Dipyridamole typically 200mg 2x/day -Lycopene typically 100mg/day range Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy |
2563- | EGCG,  |   | Cardioprotective effect of epigallocatechin gallate in myocardial ischemia/reperfusion injury and myocardial infarction: a meta-analysis in preclinical animal studies |
- | Review, | NA, | NA |
3201- | EGCG,  |   | Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential |
- | Review, | NA, | NA |
3203- | EGCG,  |   | (-)- Epigallocatechin-3-gallate induces GRP78 accumulation in the ER and shifts mesothelioma constitutive UPR into proapoptotic ER stress |
- | NA, | MM, | NA |
3205- | EGCG,  |   | The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseas |
- | Review, | Var, | NA | - | Review, | AD, | NA |
3206- | EGCG,  |   | Insights on the involvement of (-)-epigallocatechin gallate in ER stress-mediated apoptosis in age-related macular degeneration |
- | Review, | AMD, | NA |
3207- | EGCG,  |   | EGCG Enhances the Chemosensitivity of Colorectal Cancer to Irinotecan through GRP78-MediatedEndoplasmic Reticulum Stress |
- | in-vitro, | CRC, | RKO | - | in-vitro, | CRC, | HCT116 |
3210- | EGCG,  |   | Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells |
- | in-vitro, | Nor, | NA |
1975- | EGCG,  |   | Molecular bases of thioredoxin and thioredoxin reductase-mediated prooxidant actions of (-)-epigallocatechin-3-gallate |
- | in-vitro, | Cerv, | HeLa |
1303- | EGCG,  |   | (-)-Epigallocatechin-3-gallate induces apoptosis in human endometrial adenocarcinoma cells via ROS generation and p38 MAP kinase activation |
- | in-vitro, | EC, | NA |
1516- | EGCG,  |   | Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential |
- | Review, | NA, | NA |
1974- | EGCG,  |   | Protective Effect of Epigallocatechin-3-Gallate in Hydrogen Peroxide-Induced Oxidative Damage in Chicken Lymphocytes |
- | in-vitro, | Nor, | NA |
- | in-vitro, | GBM, | U87MG |
2309- | EGCG,  | Chemo,  |   | Targeting Glycolysis with Epigallocatechin-3-Gallate Enhances the Efficacy of Chemotherapeutics in Pancreatic Cancer Cells and Xenografts |
- | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | Nor, | HPNE | - | in-vitro, | PC, | PANC1 | - | in-vivo, | NA, | NA |
2310- | EGCG,  |   | Epigallocatechin-3-gallate downregulates PDHA1 interfering the metabolic pathways in human herpesvirus 8 harboring primary effusion lymphoma cells |
- | in-vitro, | lymphoma, | PEL |
3238- | EGCG,  |   | Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications |
- | Review, | Var, | NA |
3214- | EGCG,  |   | EGCG-induced selective death of cancer cells through autophagy-dependent regulation of the p62-mediated antioxidant survival pathway |
- | in-vitro, | Nor, | MRC-5 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Nor, | HEK293 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | CRC, | HCT116 |
3215- | EGCG,  |   | Epigallocatechin gallate modulates ferroptosis through downregulation of tsRNA-13502 in non-small cell lung cancer |
- | in-vitro, | NSCLC, | A549 | - | in-vitro, | NSCLC, | H1299 |
3216- | EGCG,  |   | Epigallocatechin-3-gallate suppresses hemin-aggravated colon carcinogenesis through Nrf2-inhibited mitochondrial reactive oxygen species accumulation |
- | NA, | Colon, | Caco-2 |
3218- | EGCG,  |   | Comparative efficacy of epigallocatechin-3-gallate against H2O2-induced ROS in cervical cancer biopsies and HeLa cell lines |
- | in-vitro, | Cerv, | HeLa |
3219- | EGCG,  |   | Nano-chemotherapeutic efficacy of (−) -epigallocatechin 3-gallate mediating apoptosis in A549 cells: Involvement of reactive oxygen species mediated Nrf2/Keap1signaling |
- | in-vitro, | Lung, | A549 |
3211- | EGCG,  |   | Antioxidation Function of EGCG by Activating Nrf2/HO-1 Pathway in Mice with Coronary Heart Disease |
- | in-vivo, | NA, | NA |
3223- | EGCG,  |   | The Effects of Green Tea Catechins in Hematological Malignancies |
- | Review, | AML, | NA |
3225- | EGCG,  |   | Epigallocatechin‐3‐Gallate Ameliorates Diabetic Kidney Disease by Inhibiting the TXNIP/NLRP3/IL‐1β Signaling Pathway |
- | in-vitro, | Nor, | NA | - | in-vivo, | Nor, | NA |
651- | EGCG,  |   | Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications |
663- | EGCG,  |   | EGCG-coated silver nanoparticles self-assemble with selenium nanowires for treatment of drug-resistant bacterial infections by generating ROS and disrupting biofilms |
- | in-vitro, | NA, | NA |
641- | EGCG,  | Se,  |   | Antioxidant effects of green tea |
642- | EGCG,  |   | Prooxidant Effects of Epigallocatechin-3-Gallate in Health Benefits and Potential Adverse Effect |
692- | EGCG,  |   | EGCG: The antioxidant powerhouse in lung cancer management and chemotherapy enhancement |
- | Review, | NA, | NA |
694- | EGCG,  |   | Matcha green tea (MGT) inhibits the propagation of cancer stem cells (CSCs), by targeting mitochondrial metabolism, glycolysis and multiple cell signalling pathways |
- | in-vitro, | BC, | MCF-7 |
695- | EGCG,  | TFdiG,  |   | The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention |
- | in-vitro, | NA, | HL-60 |
20- | EGCG,  |   | Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer |
- | in-vivo, | Liver, | NA | - | in-vivo, | Tong, | NA |
668- | EGCG,  |   | The Potential Role of Epigallocatechin-3-Gallate (EGCG) in Breast Cancer Treatment |
- | Review, | BC, | MCF-7 | - | Review, | BC, | MDA-MB-231 |
676- | EGCG,  | Chemo,  |   | The Potential of Epigallocatechin Gallate (EGCG) in Targeting Autophagy for Cancer Treatment: A Narrative Review |
- | Review, | NA, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:73 Target#:275 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid