condition found tbRes List
EGCG, EGCG (Epigallocatechin Gallate): Click to Expand ⟱
Features:
EGCG (Epigallocatechin Gallate) is found in green tea. 100 times more effective than Vitamin C and 25 times more effective than Vitamin E at protecting cells from damage associated with oxidative stress.
EGCG Epigallocatechin Gallate (Green Tea) -Catechin
Summary:
1. Concentration is a factor that could determine whether green tea polyphenols act as antioxidants or pro-oxidants.
2. Poor bioavailability: taking EGCG capsules without food was better.
3. Cancer dosage 4g/day (2g twice per day)? with curcumin may help (another ref says 700–2100 mg/d)
4. EGCG is susceptible to oxidative degradation.
5. “As for the pH level, the acidic environments enhance the stability of EGCG”.
6. “EGCG may enhance nanoparticle uptake by tumor cells”
7. Might be iron chelator (removing iron from cancer cells)
8. Claimed as synergistic effect with chemotherapy ( cisplatin, bleomycin, gemcitabine.
9. May suppress glucose metabolism, interfere with VEGF, downregulate NF-κB and MMP-9, down-regulation of androgen-regulated miRNA-21.
10. Take with red pepper powder, Capsicum ratio 25:1 (based on half life, they did every 4 hr) (chili pepper vanilloid capsaicin).
11. EGCG mediated ROS formation can upregulate CTR1 expression via the ERK1/2/NEAT1 pathway, which can increase the intake of chemotherapeutic drugs such as cisplatin in NSCLC cells and act as a chemosensitizer [58]
12. Matcha green tea has highest EGCG (2-3X) because consuming leaf.
13. EGCG is an ENOX2 inhibitor.
14. Nrf2 activator in both cancer and normal cells. This example of lung cancer show both directions in different cell lines, but both toward optimim level.
Biological activity, EGCG has been reported to exhibit a range of effects, including:
    Antioxidant activity: 10-50 μM
     Anti-inflammatory activity: 20-50 μM
     Anticancer activity: 50-100 μM
     Cardiovascular health: 20-50 μM
     Neuroprotective activity: 10-50 μM

Drinking a cup (or two cups) of green tea (in which one might ingest roughly 50–100 mg of EGCG from brewed tea) generally results in peak plasma EGCG concentrations in the range of approximately 0.1 to 0.6 μM.

With higher, supplement-type doses (e.g., oral doses in the 500 mg–800 mg range that are sometimes studied for clinical benefits), peak plasma concentrations in humans can reach the low micromolar range, often reported around ~1–2 μM and in some cases up to 5 μM.

Reported values can range from about 25–50 mg of EGCG per gram of matcha powder.
In cases where the matcha is exceptionally catechin-rich, the content could reach 200–250 mg or more in 5 g.

-Peak plasma concentration roughly 1 to 2 hours after oral ingestion.
-Elimination half-life of EGCG in plasma is commonly reported to be in the range of about 3 to 5 hours.

Supplemental EGCG
Dose (mg)   ≈ Peak Plasma EGCG (µM)
~50 mg          ≈ 0.1–0.3 µM
~100 mg         ≈ 0.2–0.6 µM
~250 mg         ≈ 0.5–1.0 µM
~500 mg         ≈ 1–2 µM
~800 mg or higher  ≈ 1–5 µM

50mg of EGCG in 1g of matcha tea(1/2 teaspoon)

Studies on green tea extracts have employed doses roughly equivalent to 300–800 mg/day of EGCG. Excessive doses can cause liver toxicity in some cases.

Methods to improve bioavailability
-Lipid-based carriers or nanoemulsions
-Polymer-based nanoparticles or encapsulation
-Co-administration with ascorbic acid (vitamin C)
-Co-administration of adjuvants like piperine (perhaps sunflower lecithin and chitosan) -Using multiple smaller doses rather than one large single dose.
-Taking EGCG on an empty stomach or under fasting conditions, or aligning dosing with optimal pH conditions in the GI tract, may improve its absorption.(acidic environment is generally more favorable for its stability and absorption).
– EGCG is more stable under acidic conditions. In the stomach, where the pH is typically around 1.5 to 3.5, EGCG is less prone to degradation compared to the more neutral or basic environments of the small intestine.
- At neutral (around pH 7) or alkaline pH, EGCG undergoes auto-oxidation, reducing the effective concentration available for absorption.
– Although the stomach’s acidic pH helps maintain EGCG’s stability, most absorption occurs in the small intestine, where the pH is closer to neutral.
– To counterbalance the inherent instability in the intestine, strategies such as co-administration of pH-modifying agents (like vitamin C) are sometimes used. These agents help to maintain a slightly acidic environment in the gut microenvironment, potentially improving EGCG stability during its transit and absorption.
– The use of acidifiers or buffering agents in supplements may help preserve EGCG until it reaches the absorption sites.

-Note half-life 3–5 hours.
- low BioAv 1%? despite its limited absorption, it is rapidly disseminated throughout the body
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Does NOT Lower AntiOxidant defense in Cancer Cells: NRF2↑, TrxR↓**, SOD, GSH Catalase HO1 GPx
- Raises AntiOxidant defense in Normal Cells: ROS↓">ROS, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, Notch↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective(possible damage at high dose), CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ROS, Reactive Oxygen Species: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
Reactive oxygen species (ROS) are highly reactive molecules that contain oxygen and can lead to oxidative stress in cells. They play a dual role in cancer biology, acting as both promoters and suppressors of cancer.
ROS can cause oxidative damage to DNA, leading to mutations that may contribute to cancer initiation and progression. So normally you want to inhibit ROS to prevent cell mutations.
However excessive ROS can induce apoptosis (programmed cell death) in cancer cells, potentially limiting tumor growth. Chemotherapy typically raises ROS.

"Reactive oxygen species (ROS) are two electron reduction products of oxygen, including superoxide anion, hydrogen peroxide, hydroxyl radical, lipid peroxides, protein peroxides and peroxides formed in nucleic acids 1. They are maintained in a dynamic balance by a series of reduction-oxidation (redox) reactions in biological systems and act as signaling molecules to drive cellular regulatory pathways."
"During different stages of cancer formation, abnormal ROS levels play paradoxical roles in cell growth and death 8. A physiological concentration of ROS that maintained in equilibrium is necessary for normal cell survival. Ectopic ROS accumulation promotes cell proliferation and consequently induces malignant transformation of normal cells by initiating pathological conversion of physiological signaling networks. Excessive ROS levels lead to cell death by damaging cellular components, including proteins, lipid bilayers, and chromosomes. Therefore, both scavenging abnormally elevated ROS to prevent early neoplasia and facilitating ROS production to specifically kill cancer cells are promising anticancer therapeutic strategies, in spite of their contradictoriness and complexity."
"ROS are the collection of derivatives of molecular oxygen that occur in biology, which can be categorized into two types, free radicals and non-radical species. The non-radical species are hydrogen peroxide (H 2O 2 ), organic hydroperoxides (ROOH), singlet molecular oxygen ( 1 O 2 ), electronically excited carbonyl, ozone (O3 ), hypochlorous acid (HOCl, and hypobromous acid HOBr). Free radical species are super-oxide anion radical (O 2•−), hydroxyl radical (•OH), peroxyl radical (ROO•) and alkoxyl radical (RO•) [130]. Any imbalance of ROS can lead to adverse effects. H2 O 2 and O 2 •− are the main redox signalling agents. The cellular concentration of H2 O 2 is about 10−8 M, which is almost a thousand times more than that of O2 •−".
"Radicals are molecules with an odd number of electrons in the outer shell [393,394]. A pair of radicals can be formed by breaking a chemical bond or electron transfer between two molecules."

Recent investigations have documented that polyphenols with good antioxidant activity may exhibit pro-oxidant activity in the presence of copper ions, which can induce apoptosis in various cancer cell lines but not in normal cells. "We have shown that such cell growth inhibition by polyphenols in cancer cells is reversed by copper-specific sequestering agent neocuproine to a significant extent whereas iron and zinc chelators are relatively ineffective, thus confirming the role of endogenous copper in the cytotoxic action of polyphenols against cancer cells. Therefore, this mechanism of mobilization of endogenous copper." > Ions could be one of the important mechanisms for the cytotoxic action of plant polyphenols against cancer cells and is possibly a common mechanism for all plant polyphenols. In fact, similar results obtained with four different polyphenolic compounds in this study, namely apigenin, luteolin, EGCG, and resveratrol, strengthen this idea.
Interestingly, the normal breast epithelial MCF10A cells have earlier been shown to possess no detectable copper as opposed to breast cancer cells [24], which may explain their resistance to polyphenols apigenin- and luteolin-induced growth inhibition as observed here (Fig. 1). We have earlier proposed [25] that this preferential cytotoxicity of plant polyphenols toward cancer cells is explained by the observation made several years earlier, which showed that copper levels in cancer cells are significantly elevated in various malignancies. Thus, because of higher intracellular copper levels in cancer cells, it may be predicted that the cytotoxic concentrations of polyphenols required would be lower in these cells as compared to normal cells."

Majority of ROS are produced as a by-product of oxidative phosphorylation, high levels of ROS are detected in almost all cancers.
-It is well established that during ER stress, cytosolic calcium released from the ER is taken up by the mitochondrion to stimulate ROS overgeneration and the release of cytochrome c, both of which lead to apoptosis.

Note: Products that may raise ROS can be found using this database, by:
Filtering on the target of ROS, and selecting the Effect Direction of ↑

Targets to raise ROS (to kill cancer cells):
• NADPH oxidases (NOX): NOX enzymes are involved in the production of ROS.
    -Targeting NOX enzymes can increase ROS levels and induce cancer cell death.
    -eNOX2 inhibition leads to a high NADH/NAD⁺ ratio which can lead to increased ROS
• Mitochondrial complex I: Inhibiting can increase ROS production
• P53: Activating p53 can increase ROS levels(by inducing the expression of pro-oxidant genes)
• Nrf2: regulates the expression of antioxidant genes. Inhibiting Nrf2 can increase ROS levels
• Glutathione (GSH): an antioxidant. Depleting GSH can increase ROS levels
• Catalase: Catalase converts H2O2 into H2O+O. Inhibiting catalase can increase ROS levels
• SOD1: converts superoxide into hydrogen peroxide. Inhibiting SOD1 can increase ROS levels
• PI3K/AKT pathway: regulates cell survival and metabolism. Inhibiting can increase ROS levels
• HIF-1α: regulates genes involved in metabolism and angiogenesis. Inhibiting HIF-1α can increase ROS
• Glycolysis: Inhibiting glycolysis can increase ROS levels • Fatty acid oxidation: Cancer cells often rely on fatty acid oxidation for energy production.
-Inhibiting fatty acid oxidation can increase ROS levels
• ER stress: Endoplasmic reticulum (ER) stress can increase ROS levels
• Autophagy: process by which cells recycle damaged organelles and proteins.
-Inhibiting autophagy can increase ROS levels and induce cancer cell death.
• KEAP1/Nrf2 pathway: regulates the expression of antioxidant genes.
    -Inhibiting KEAP1 or activating Nrf2 can increase ROS levels and induce cancer cell death.
• DJ-1: regulates the expression of antioxidant genes. Inhibiting DJ-1 can increase ROS levels
• PARK2: regulates the expression of antioxidant genes. Inhibiting PARK2 can increase ROS levels
• SIRT1:regulates the expression of antioxidant genes. Inhibiting SIRT1 can increase ROS levels
• AMPK: regulates energy metabolism and can increase ROS levels when activated.
• mTOR: regulates cell growth and metabolism. Inhibiting mTOR can increase ROS levels
• HSP90: regulates protein folding and can increase ROS levels when inhibited.
• Proteasome: degrades damaged proteins. Inhibiting the proteasome can increase ROS levels
• Lipid peroxidation: a process by which lipids are oxidized, leading to the production of ROS.
    -Increasing lipid peroxidation can increase ROS levels
• Ferroptosis: form of cell death that is regulated by iron and lipid peroxidation.
    -Increasing ferroptosis can increase ROS levels
• Mitochondrial permeability transition pore (mPTP): regulates mitochondrial permeability.
    -Opening the mPTP can increase ROS levels
• BCL-2 family proteins: regulate apoptosis and can increase ROS levels when inhibited.
• Caspase-independent cell death: a form of cell death that is regulated by ROS.
    -Increasing caspase-independent cell death can increase ROS levels
• DNA damage response: regulates the repair of DNA damage. Increasing DNA damage can increase ROS
• Epigenetic regulation: process by which gene expression is regulated.
    -Increasing epigenetic regulation can increase ROS levels

-PKM2, but not PKM1, can be inhibited by direct oxidation of cysteine 358 as an adaptive response to increased intracellular reactive oxygen species (ROS)

ProOxidant Strategy:(inhibit the Melavonate Pathway (likely will also inhibit GPx)
-HydroxyCitrate (HCA) found as supplement online and typically used in a dose of about 1.5g/day or more
-Atorvastatin typically 40-80mg/day
-Dipyridamole typically 200mg 2x/day
-Lycopene typically 100mg/day range

Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy

Scientific Papers found: Click to Expand⟱
2563- EGCG,    Cardioprotective effect of epigallocatechin gallate in myocardial ischemia/reperfusion injury and myocardial infarction: a meta-analysis in preclinical animal studies
- Review, NA, NA
cardioP↑, EGCG significantly improves cardiac function, serum myocardial injury enzyme, and oxidative stress levels in MIRI animal models
ROS↑,
AntiAg↑, EGCG can inhibit platelet aggregation induced by U46619, collagen, arachidonic acid, and toxic carotenoids and shear force-induced platelet adhesion dose-dependently by suppressing PLCγ2 and tyrosine phosphorylation
eff↑, What’s more, its combination with common antiplatelet therapeutic agents, aspirin (ASA), clopidogrel (CPD), and tiglitazarol (TCG), did not further inhibit platelet aggregation resulting in bleeding complications
COX1↓, EGCG inhibits platelet activation by inhibiting microsomal cyclooxygenase-1 activity in platelets

3201- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*AntiCan↑, EGCG’s therapeutic potential in preventing and managing a range of chronic conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes
*cardioP↑,
*neuroP↑,
*BioAv↝, Factors such as fasting, storage conditions, albumin levels, vitamin C, fish oil, and piperine have been shown to affect plasma concentrations and the overall bioavailability of EGCG
*BioAv↓, Conversely, bioavailability is reduced by processes such as air oxidation, sulfation, glucuronidation, gastrointestinal degradation, and interactions with Ca2+, Mg2+, and trace metals,
*BioAv↓, EGCG’s oral bioavailability is generally low, with marked differences observed across species, for example, bioavailability rates of 26.5% in CF-1 mice and just 1.6% in Sprague Dawley rats
*Dose↝, plasma concentrations exceeded 1 μM only when doses of 1 g or higher were administered.
*Half-Life↝, Specifically, a dose of 1600 mg yielded a Cmax of 3392 ng/mL (range: 130–3392 ng/mL), with peak levels observed between 1.3 and 2.2 h, AUC (0–∞) values ranging from 442 to 10,368 ng·h/mL, and a half-life (t1/2z) of 1.9 to 4.6 h.
*BioAv↑, Studies on the distribution of EGCG have revealed that, despite its limited absorption, it is rapidly disseminated throughout the body or quickly converted into metabolites
*BBB↑, Additionally, EGCG can cross the blood–brain barrier, allowing it to reach the brain
*hepatoP↓, Several studies have documented liver damage linked to green tea consumption [48,49,50,51,52,53].
*other↓, EGCG has also been shown to inhibit the intestinal absorption of non-heme iron in a dose-dependent manner in a controlled clinical trial
*Inflam↓, EGCG has been widely recognized for its anti-inflammatory effects
*NF-kB↓, EGCG has been shown to suppress NF-κB activation, inhibit its nuclear translocation, and block AP-1 activity
*AP-1↓,
*iNOS↓, downregulation of pro-inflammatory enzymes like iNOS and COX-2 and scavenging of ROS/RNS, including nitric oxide and peroxynitrite
*COX2↓,
*ROS↓,
*RNS↓,
*IL8↓, EGCG has been shown to suppress airway inflammation by reducing IL-8 release, a cytokine involved in neutrophil aggregation and ROS production.
*JAK↓, EGCG blocks the JAK1/2 signaling pathway
*PDGFR-BB↓, downregulate PDGFR and IGF-1R gene expression
*IGF-1R↓,
*MMP2↓, reduce MMP-2 mRNA expression
*P53↓, downregulation of the p53-p21 signaling pathway and the enhanced expression of Nrf2
*NRF2↑,
*TNF-α↓, 25 to 100 μM reduced the levels of TNF-α, IL-6, and ROS while enhancing the expression of E2F2 and superoxide dismutases (SOD1 and SOD2), enzymes vital for cellular antioxidant defense.
*IL6↓,
*E2Fs↑,
*SOD1↑,
*SOD2↑,
Casp3↑, EGCG has been shown to activate key apoptotic pathways, such as caspase-3 activation, cytochrome c release, and PARP cleavage, in various cell models, including PC12 cells exposed to oxidative stress
Cyt‑c↑,
PARP↑,
DNMTs↓, (1) the inhibition of DNA hypermethylation by blocking DNA methyltransferase (DNMT)
Telomerase↓, (2) the repression of telomerase activity;
Hif1a↓, (3) the suppression of angiogenesis via the inhibition of HIF-1α and NF-κB;
MMPs↓, (4) the prevention of cellular metastasis by inhibiting matrix metalloproteinases (MMPs);
BAX↑, (5) the promotion of apoptosis through the activation of pro-apoptotic proteins like BAX and BAK
Bak↑,
Bcl-2↓, while downregulating anti-apoptotic proteins like BCL-2 and BCL-XL;
Bcl-xL↓,
P53↑, (6) the upregulation of tumor suppressor genes such as p53 and PTEN;
PTEN↑,
TumCP↓, (7) the inhibition of inflammation and proliferation via NF-κB suppression;
MAPK↓, (8) anti-proliferative activity through the modulation of MAPK and IGF1R pathways
HGF/c-Met↓, EGCG inhibits hepatocyte growth factor (HGF), which is involved in tumor migration and invasion
TIMP1↑, EGCG has also been shown to influence the expression of tissue inhibitors of metalloproteinases (TIMPs) and MMPs, which are involved in tumorigenesis
HDAC↓, nhibition of UVB-induced DNA hypomethylation and modulation of DNMT and histone deacetylase (HDAC) activities
MMP9↓, inhibiting MMPs such as MMP-2 and MMP-9
uPA↓, EGCG may block urokinase-like plasminogen activator (uPA), a protease involved in cancer progression
GlutMet↓, EGCG can exert antitumor effects by inhibiting glycolytic enzymes, reducing glucose metabolism, and further suppressing cancer-cell growth
ChemoSen↑, EGCG’s combination with standard chemotherapy drugs may enhance their efficacy through additive or synergistic effects, while also mitigating chemotherapy-related side effects
chemoP↑,

3203- EGCG,    (-)- Epigallocatechin-3-gallate induces GRP78 accumulation in the ER and shifts mesothelioma constitutive UPR into proapoptotic ER stress
- NA, MM, NA
ROS↑, We have previously shown that (-)-epigallocatechin-3-gallate (EGCG) enhances ROS production and alters Ca2+ homeostasis in cell lines deriving from therapy-recalcitrant malignant mesothelioma (MMe).
Ca+2↝,
GRP78/BiP↑, Exposure to EGCG further increased GRP78 in the ER, and induced ATF4, spliced XBP1, CHOP, and EDEM expressions, combined with a reduction of cell surface GRP78 and a rise in caspase 3 and 8 activities.
ATF4↑,
XBP-1↑,
CHOP↑,
Casp3↑,
Casp8↑,
*GRP78/BiP↓, n non-cancer mouse retinal pigment epithelial cells,EGCG has been found to downregulate GRP78 and UPR signaling (Karthikeyan et al., 2017).
*UPR↓,
UPR↑, However, if ER homeostasiscannot be re-established, the UPR switches its signaling toward irreversible ER stress with the activation of apoptosis (

3205- EGCG,    The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseas
- Review, Var, NA - Review, AD, NA
Beclin-1↑, EGCG not only regulates autophagy via increasing Beclin-1 expression and reactive oxygen species generation,
ROS↑,
Apoptosis↑, Apoptosis is a common cell function in biology and is induced by endoplasmic reticulum stress (ERS)
ER Stress↑,
*Inflam↓, EGCG has health benefits including anti-tumor [15], anti-inflammatory [16], anti-diabetes [17], anti-myocardial infarction [18], anti-cardiac hypertrophy [19], anti-atherosclerosis [20], and antioxidant
*cardioP↑,
*antiOx?,
*LDL↓, These effects are mainly related to (LDL) cholesterol inhibition, NF-κB inhibition, MPO activity inhibition, decreased levels of glucose and glycated hemoglobin in plasma, decreased inflammatory markers, and reduced ROS generation
*NF-kB↓,
*MPO↓,
*glucose↓,
*ROS↓,
ATG5↑, EGCG induced autophagy by enhancing Beclin-1, ATG5, and LC3B and promoted mitochondrial depolarization in breast cancer cells.
LC3B↑,
MMP↑,
lactateProd↓, 20 mg kg−1 EGCG significantly decreased glucose, lactic acid, and vascular endothelial growth factor (VEGF) levels
VEGF↓,
Zeb1↑, (20 uM) inhibited the proliferation through activating autophagy via upregulating ZEB1, WNT11, IGF1R, FAS, BAK, and BAD genes and inhibiting TP53, MYC, and CASP8 genes in SSC-4 human oral squamous cells [
Wnt↑,
IGF-1R↑,
Fas↑,
Bak↑,
BAD↑,
TP53↓,
Myc↓,
Casp8↓,
LC3II↑, increasing the LC3-II expression levels and induced apoptosis via inducing ROS in mesothelioma cell lines,
NOTCH3↓, but also could reduce partially Notch3/DLL3 to reduce drug-resistance and the stemness of tumor cells
eff↑, In combination therapies, low-intensity pulsed electric field (PEF) can improve EGCG to affect tumor cells; ultrasound (US) with tumor cells is the application of physical stimulation in cancer therapy.
p‑Akt↓, 20 μM EGCG increased intracellular ROS levels and LC3-II, and inhibited p-Akt in PANC-1 cells
PARP↑, 100 μM EGCG increased LC3-II, activated caspase-3 and PARP, and reduced p-Akt in HepG2
*Cyt‑c↓, EGCG protected neuronal cells against human viruses by inhibiting cytochrome c and Bax translocations, and reducing autophagy with increased LC3-II expression and decreased p62 expression
*BAX↓,
*memory↑, EGCG restored autophagy in the mTOR/p70S6K pathway to weaken memory and learning disorders induced by CUMS
*neuroP↑, Finally, EGCG increased the neurological scores through inhibiting cell death
*Ca+2?, EGCG treatment, [Ca2+]m and [Ca2+]i expressions were reduced and oxyhemoglobin-induced mitochondrial dysfunction lessened.
GRP78/BiP↑, MMe cells with EGCG treatment improved GRP78 expression in the endoplasmic reticulum, and induced EDEM, CHOP, XBP1, and ATF4 expressions, and increased the activity of caspase-3 and caspase-8.
CHOP↑, GRP78 accumulation converted UPR of MMe cells into pro-apoptotic ERS
ATF4↑,
Casp3↑,
Casp8↑,
UPR↑,

3206- EGCG,    Insights on the involvement of (-)-epigallocatechin gallate in ER stress-mediated apoptosis in age-related macular degeneration
- Review, AMD, NA
*Ca+2↓, EGCG restores [Ca2+]i homeostasis by decreasing ROS production through inhibition of prohibitin1 which regulate ER-mitochondrial tether site and inhibit apoptosis.
*ROS↓,
*Apoptosis↓,
*GRP78/BiP↓, EGCG downregulated GRP78, CHOP, PERK, ERO1α, IRE1α, cleaved PARP, cleaved caspase 3, caspase 12 and upregulated expression of calnexinin MRPE cells
*CHOP↓,
*PERK↓,
*IRE1↓,
*p‑PARP↓,
*Casp3↓,
*Casp12↓,
*ER Stress↓,
*UPR↓, EGCG mitigates ER stress; maintain calcium homeostasis and inhibition of UPR to control the progression of AMD.

3207- EGCG,    EGCG Enhances the Chemosensitivity of Colorectal Cancer to Irinotecan through GRP78-MediatedEndoplasmic Reticulum Stress
- in-vitro, CRC, RKO - in-vitro, CRC, HCT116
GRP78/BiP↑, Findings showed that EGCG alone or in combination with irinotecan can significantly promote intracellular GRP78 protein expression, reduce mitochondrial membrane potential and intracellular ROS in RKO and HCT 116 cells
MMP↓,
ER Stress↑, activate ERS of colorectal cancer cells,
ROS↓, EGCG Alone and in Combination with Irinotecan Inhibit ROS Production in CRC
UPR↑, EGCG can promote the transformation of constitutive UPR of colorectal cancer cells into endoplasmic reticulum stress by increasing the accumulation of intracellular GRP78 and inhibiting its cell membrane translocation.

3210- EGCG,    Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells
- in-vitro, Nor, NA
*ROS↓, reduced production of intracellular ROS through activation of Nrf2 signaling and increased catalase anti-oxidant enzyme.
*NRF2↓,
*Catalase↑,
*antiOx↑,

1975- EGCG,    Molecular bases of thioredoxin and thioredoxin reductase-mediated prooxidant actions of (-)-epigallocatechin-3-gallate
- in-vitro, Cerv, HeLa
TrxR↓, EGCG-induced inactivation of TrxR and decreased cell survival, revealing TrxR as a new target of EGCG.
Trx↓,
ROS↑, EGCG induced inactivation of Trx/TrxR in parallel with increased ROS levels in HeLa cells.
Dose↑, Statistics indicated that ROS levels were significantly higher within a range of 50-200uM EGCG than that at 25 uM EGCG, but there were no significant differences in ROS levels between 50 uM vs 100 uM,

1303- EGCG,    (-)-Epigallocatechin-3-gallate induces apoptosis in human endometrial adenocarcinoma cells via ROS generation and p38 MAP kinase activation
- in-vitro, EC, NA
TumCP↓,
ER-α36↓,
cycD1↓,
ERK↑,
Jun↓,
BAX↑,
Bcl-2↓,
cl‑Casp3↑,
ROS↑,
p38↑,

1516- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*Dose∅, A pharmacokinetic study in healthy individuals receiving single doses of EGCGrevealed that plasma concentrations exceeded 1 μM only with doses of >1 g
Half-Life∅, peak levels observed between 1.3 and 2.2 h (and a half-life (t1/2z) of 1.9 to 4.6 h)
BioAv∅, oral bioavailability of 20.3% relative to intravenous admistration
BBB↑, EGCG can cross the blood–brain barrier, allowing it to reach the brain
toxicity∅, Isbrucher et al. found no evidence of genotoxicity in rats following oral administration of EGCG at doses of 500, 1000, or 2000 mg/kg, or intravenous injections of 10, 25, or 50 mg/kg/day.
eff↓, interaction with the folate transporter has been reported, leading to reduced bioavailability of folic acid
Apoptosis↑,
Casp3↑,
Cyt‑c↑, cytochrome c release
cl‑PARP↑,
DNMTs↓,
Telomerase↓,
angioG↓,
Hif1a↓,
NF-kB↓,
MMPs↓,
BAX↑,
Bak↑,
Bcl-2↓,
Bcl-xL↓,
P53↑,
PTEN↑,
IGF-1↓,
H3↓,
HDAC1↓,
*LDH↓, reduces LDL cholesterol, decreases oxidative stress by neutralizing ROS
*ROS↓,

1974- EGCG,    Protective Effect of Epigallocatechin-3-Gallate in Hydrogen Peroxide-Induced Oxidative Damage in Chicken Lymphocytes
- in-vitro, Nor, NA
*ROS↓, suppressed the increase in intracellular reactive oxygen species (ROS), nitric oxide (NO),
*NO↓,
*MMP↑, preincubation of the cells with EGCG increased mitochondrial membrane potential (MMP) and reduced calcium ion ([Ca2+]i) load.
*i-Ca+2↓, EGCC Increased Mitochondrial Membrane Potential and Decreased [Ca2+]i
*HO-1↑, expression of SOD, Heme oxygenase-1 (HO-1), Catalase (CAT), GSH-PX, nuclear factor erythroid 2-related factor 2 (Nrf2), and thioredoxin-1 (Trx-1).
*Catalase↑,
*NRF2↑,
*Trx1↑,
*antiOx↑, EGCC Increased Antioxidant Capacity
*SOD↑, EGCC Decreased ROS and Increased SOD Generation
*Apoptosis↓,

1976- EGCG,    Epigallocatechin-3-gallate exhibits anti-tumor effect by perturbing redox homeostasis, modulating the release of pro-inflammatory mediators and decreasing the invasiveness of glioblastoma cells
- in-vitro, GBM, U87MG
ROS↑, Polyphenol epigallocatechin-3-gallate (EGCG) induced apoptosis in glioma cells by elevating oxidative stress through increased reactive oxygen species (ROS) generation. Signs of apoptosis included altered mitochondrial membrane potential and elevated
MMP↓, altered mitochondrial membrane potential
Casp3↑, elevated expression of caspase-3 (5fold) and cytochrome c
Cyt‑c↑,
Trx1↓, The increase in ROS was concomitant with the decrease in expression of thioredoxin (TRX-1)
Ceru↓, and ceruloplasmin (CP)
IL6↓, EGCG downregulated the levels of pro-inflammatory cytokine interleukin (IL)-6 and chemokines IL-8, monocyte-chemoattractant protein (MCP)-1 and RANTES
IL8↓,
MCP1↓,
RANTES?,
uPA↝, 40-50% decrease in uPa activity was observed in glioma cells upon treatment with 50 and 100 uM of EGCG
ROS↑, ROS production, a significant 1.7- and 2-fold (p<0.05) increase in ROS production was observed in cells treated with 50 and 100 uM EGCG respectively,

2309- EGCG,  Chemo,    Targeting Glycolysis with Epigallocatechin-3-Gallate Enhances the Efficacy of Chemotherapeutics in Pancreatic Cancer Cells and Xenografts
- in-vitro, PC, MIA PaCa-2 - in-vitro, Nor, HPNE - in-vitro, PC, PANC1 - in-vivo, NA, NA
TumCG↓, EGCG reduced pancreatic cancer cell growth in a concentration-dependent manner
eff↑, and the growth inhibition effect was further enhanced under glucose deprivation conditions.
ROS↑, EGCG at 40 µM increased ROS levels by 1.4- and 1.6-fold in Panc-1 and MIA PaCa-2 cells, respectively
ECAR↓, EGCG affected glycolysis by suppressing the extracellular acidification rate through the reduction of the activity and levels of the glycolytic enzymes phosphofructokinase and pyruvate kinase.
ChemoSen↑, EGCG sensitized gemcitabine to inhibit pancreatic cancer cell growth in vitro and in vivo.
selectivity↑, EGCG at 80 µM for 72 h had significantly less effect on the HPNE cells, reducing cell growth by only 24%
Glycolysis↓, EGCG Inhibits Glycolysis through Suppressing Rate-Limiting Enzymes. EGCG Plus Gemcitabine Further Inhibits Glycolysis
PFK↓, EGCG treatment reduced both the activity and expression levels of phosphofructokinase (PFK) and pyruvate kinase (PK) in Panc-1 and MIA PaCa-2 cells
PKA↓,
HK2∅, EGCG failed to reduce hexokinases II (HK2) and lactate dehydrogenase A (LDHA) protein expression levels
LDHA∅,
PFKP↓, EGCG reduced the levels of PFKP and PKM2 (p < 0.01 for both) in pancreatic tumor xenograft homogenates, obtained from mice treated with EGCG
PKM2↓,
H2O2↑, EGCG at 40 µM increased H2O2 levels by 1.5- and 1.9-fold in Panc-1 and MIA PaCa-2 cells
TumW↓, EGCG and gemcitabine, given as single agents, reduced tumor weight by 40% and 52%, respectively, compared to vehicle-treated controls (p < 0.05 and p < 0.01). In combination, EGCG plus gemcitabine reduced tumor weight by 67%,

2310- EGCG,    Epigallocatechin-3-gallate downregulates PDHA1 interfering the metabolic pathways in human herpesvirus 8 harboring primary effusion lymphoma cells
- in-vitro, lymphoma, PEL
GLUT3↑, EGCG increased GLUT3 and decreased PDHA1 and GDH1 expression to disrupt glycolysis and glutaminolysis in PEL cells
PDHA1↓,
GDH↓,
ROS↑, Previously we have demonstrated that EGCG induces ROS generation and cell death in HHV8 harboring PEL cells
Glycolysis↓, EGCG induced PEL cell death may due to suppresses both the aerobic glycolysis and oxidative phosphorylation
OXPHOS↓,

3238- EGCG,    Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications
- Review, Var, NA
Telomerase↓, EGCG stimulates telomere fragmentation through inhibiting telomerase activity.
DNMTs↓, EGCG reduced DNMTs,
cycD1↓, EGCG also reduced the protein expression of cyclin D1, cyclin E, CDK2, CDK4, and CDK6. EGCG also inhibited the activity of CDK2 and CDK4, and caused Rb hypophosphorylation
cycE↓,
CDK2↓,
CDK4↓,
CDK6↓,
HATs↓, EGCG can inhibit certain biomedically important molecular targets such as DNMTs, HATs, and HDACs
HDAC↓,
selectivity↑, EGCG has shown higher cytotoxicity in cancer cells than in their normal counterparts.
uPA↓, EGCG blocks urokinase, an enzyme which is essential for cancer growth and metastasis
NF-kB↓, EGCG inhibits NFκB and expression of TNF-α, reduces cancer promotion
TNF-α↓,
*ROS↓, It acts as strong ROS scavenger and antioxidant,
*antiOx↑,
Hif1a↓, ↓ HIF-1α; ↓ VEGF; ↓ VEGFR1;
VEGF↓,
MMP2↓, ↓ MMP-2; ↓ MMP-9; ↓ FAK;
MMP9↓,
FAK↓,
TIMP2↑, TIMP-2; ↑
Mcl-1↓, ↓ Mcl-1; ↓ survivin; ↓ XIAP
survivin↓,
XIAP↓,
PCNA↓, ↓ PCNA; ↑ 16; ↑ p18; ↑ p21; ↑ p27; ↑ pRb; ↑ p53; ↑ mdm2
p16↑,
P21↑,
p27↑,
pRB↑,
P53↑,
MDM2↑,
ROS↑, ROS; ↑ caspase-3; ↑ caspase-8; ↑ caspase-9; ↑ cytochrome c; ↑ Smac/DIABLO; ↓↑ Bax; Z Bak; ↓ cleaved PPAR;
Casp3↑,
Casp8↑,
Casp9↑,
Cyt‑c↑,
Diablo↑,
BAX⇅,
cl‑PPARα↓,
PDGF↓, ↓ PDGF; ↓ PDGFRb; ↓ EGFR;
EGFR↓,
FOXO↑, activated FOXO transcription factors
AP-1↓, The inhibition of AP-1 activity by EGCG was associated with inhibition of JNK activation but not ERK activation.
JNK↓,
COX2↓, EGCG reduces the activity of COX-2 following interleukin-1A stimulation of human chondrocytes
angioG↓, EGCG inhibits angiogenesis by enhancing FOXO transcriptional activity

3214- EGCG,    EGCG-induced selective death of cancer cells through autophagy-dependent regulation of the p62-mediated antioxidant survival pathway
- in-vitro, Nor, MRC-5 - in-vitro, Cerv, HeLa - in-vitro, Nor, HEK293 - in-vitro, BC, MDA-MB-231 - in-vitro, CRC, HCT116
mTOR↓, In contrast, EGCG treatment in HeLa cells led to AMPK-induced mTOR inactivation
AMPK↑, via AMPK activation,
selectivity↑, EGCG was previously reported to differentially induce ROS production in normal and cancer cells, resulting in the preferential perturbation of the redox homeostasis of cancer cells via increased ROS levels, especially H2O2, in cancer cells
ROS↑,
selectivity↑, EGCG-induced selective death of cancer cells is accomplished by the positive and negative regulation of the p62-KEAP1-NRF2-HO-1 antioxidant survival pathway between normal cells and cancer cells, respectively,
HO-1↓, HO-1 expression decreased significantly with increasing EGCG concentration in all six different cancer cells
*NRF2↑, According to our findings, EGCG increased the protein level of NRF2 in normal cells but decreased them in cancer cells even though its mRNA levels were more or less equal in both cell types
NRF2↓,
*HO-1↑, upregulates HO-1 through the prolonged stability of NRF2 in MRC5 cells, whereas it downregulates HO-1 through the increased degradation of NRF2 by ubiquitination in HeLa and HCT116 cells.

3215- EGCG,    Epigallocatechin gallate modulates ferroptosis through downregulation of tsRNA-13502 in non-small cell lung cancer
- in-vitro, NSCLC, A549 - in-vitro, NSCLC, H1299
TumCP↓, EGCG resulted in a notable suppression of cell proliferation, as evidenced by a reduction in Ki67 immunofluorescence staining
Ki-67↓,
GPx4↓, EGCG treatment led to a decrease in the expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) while increasing the levels of acyl-CoA synthetase long-chain family member 4 (ACSL4).
ACSL4↑,
Iron↑, accompanied by an increase in intracellular iron, malondialdehyde (MDA), and reactive oxygen species (ROS), alongside ultrastructural alterations characteristic of ferroptosis.
MDA↑,
ROS↑,
Ferroptosis↑,
eff↑, The cooperative effect of metformin and EGCG-activated Nrf2/HO-1 signaling pathway, facilitated by SIRT1-mediated Nrf2 deacetylation, enhances the susceptibility of NSCLC to EGCG modulation by promoting reactive oxygen species (ROS) generation and a
NRF2↑,
HO-1↑,

3216- EGCG,    Epigallocatechin-3-gallate suppresses hemin-aggravated colon carcinogenesis through Nrf2-inhibited mitochondrial reactive oxygen species accumulation
- NA, Colon, Caco-2
NRF2↑, EGCG enhanced hemin-induced Nrf2 and antioxidant gene expression
TumCP↓, EGCG reduced hemin-induced proliferation and colon carcinogenesis through Nrf2-inhibited mitochondrial ROS accumulation.
mt-ROS↓,
Keap1↓, We found that hemin treatment increased Nrf2 expression, but decreased Keap1 expression in a time-dependent manner

3218- EGCG,    Comparative efficacy of epigallocatechin-3-gallate against H2O2-induced ROS in cervical cancer biopsies and HeLa cell lines
- in-vitro, Cerv, HeLa
SOD↑, activity of SOD and GPx ameliorated significantly by 117% and 264.2%, respectively
GPx↑,
*antiOx↑, EGCG, a natural antioxidant,
ROS↓, indicating EGCG to be an effective natural antioxidant combating ROS, generated as a consequence of cellular activation in cancerous cells.

3219- EGCG,    Nano-chemotherapeutic efficacy of (−) -epigallocatechin 3-gallate mediating apoptosis in A549 cells: Involvement of reactive oxygen species mediated Nrf2/Keap1signaling
- in-vitro, Lung, A549
ROS↑, Nano EGCG exhibited increased ROS/RNS levels and decreased mitochondrial membrane potential
RNS↓,
MMP↓,
NRF2↑, EGCG exhibited an increased expression of Nrf2 and Keap1 that could regulate apoptosis in A549 cells.
Keap1↓,

3211- EGCG,    Antioxidation Function of EGCG by Activating Nrf2/HO-1 Pathway in Mice with Coronary Heart Disease
- in-vivo, NA, NA
*cardioP↑, EGCG significantly attenuated myocardial injuries and improved blood lipid levels in mice in a concentration-dependent manner.
*VEGF↓, EGCG significantly decreased the expression of VEGFA and MMP-2 and increased the activity of superoxide dismutase (SOD), when reducing the content of reactive oxygen species (ROS) in the myocardial tissue
*MMP2↓,
*SOD↑,
*ROS↓,
*HO-1↑, and upregulating the expression of HO-1, NQO1, and Nrf2.
*NQO1↑,
*NRF2↑,

3223- EGCG,    The Effects of Green Tea Catechins in Hematological Malignancies
- Review, AML, NA
Prx↓, In IM9 multiple myeloma cells, EGCG reduced the protein levels of peroxiredoxin V (Prdx V, which catalyzes the reduction in hydrogen peroxide), inducing ROS accumulation and cell death
ROS↑,

3225- EGCG,    Epigallocatechin‐3‐Gallate Ameliorates Diabetic Kidney Disease by Inhibiting the TXNIP/NLRP3/IL‐1β Signaling Pathway
- in-vitro, Nor, NA - in-vivo, Nor, NA
*RenoP↑, EGCG improved kidney function, reduced albuminuria and body weight, and alleviated renal pathological damage.
*NLRP3↓, EGCG treatment reduced the expression of the NLRP3 inflammasome and its associated proteins, including TXNIP, ASC, caspase‐1, and IL‐1β, as well as the levels of ROS and inflammatory factors such as TNF‐α, IL‐6, and IL‐18.
*TXNIP↓,
*ASC↓,
*Casp1↓,
*IL1β↓,
*ROS↓,
*TNF-α↓,
*IL6↓,
*IL18↓,

651- EGCG,    Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications
ROS↑, mounting evidence that EGCG can stimulate ROS production, which in turn leads to the phosphorylation and activation of AMPK
p‑AMPK↑,
mTOR↓,
FAK↓,
Smo↓,
Gli1↓,
HH↓,
TumCMig↓,
TumCI↓,
NOTCH↓,
JAK↓,
STAT↓,
Bcl-2↓,
Bcl-xL↓,
BAX↑,
Casp9↑,

663- EGCG,    EGCG-coated silver nanoparticles self-assemble with selenium nanowires for treatment of drug-resistant bacterial infections by generating ROS and disrupting biofilms
- in-vitro, NA, NA
ROS↑, Bacteria

641- EGCG,  Se,    Antioxidant effects of green tea
ROS↑, Concentration is a factor that could determine whether green tea polyphenols act as antioxidants or pro-oxidants. EGC and EGCG, both generate hydrogen peroxide at concentrations greater than 10 μM
H2O2↑, Adding milk to green tea decreases formation of hydrogen peroxide,
ROS⇅, Selenium could enhance anticancer activity of green tea [29], possibly by enhancing antioxidant activity [30, 31], or even its pro-oxidant activity [32].

642- EGCG,    Prooxidant Effects of Epigallocatechin-3-Gallate in Health Benefits and Potential Adverse Effect
ROS↑, under high-dose conditions. Autooxidation of EGCG generates substantial ROS
H2O2↑, One EGCG molecule could produce more than two H2O2 molecules
Apoptosis↑,
Trx↓, High concentration of EGCG inactivated Trx/TrxR via the formation of EGCG-Trx1 and EGCG-TrxR conjugates
TrxR↓, High concentration of EGCG inactivated Trx/TrxR via the formation of EGCG-Trx1 and EGCG-TrxR conjugates
JNK↑,
HO-1↑,
Fenton↑,

692- EGCG,    EGCG: The antioxidant powerhouse in lung cancer management and chemotherapy enhancement
- Review, NA, NA
ROS↑,
Apoptosis↑,
DNAdam↑,
CTR1↑,
JWA↑,
β-catenin/ZEB1↓, downregulation of the Wnt/β-catenin pathway interferes with CSC traits
P53↑,
Vim↓,
VEGF↓,
p‑Akt↓,
Hif1a↓,
COX2↓,
ERK↓,
NF-kB↓,
Akt↓,
Bcl-xL↓,
miR-210↓,

694- EGCG,    Matcha green tea (MGT) inhibits the propagation of cancer stem cells (CSCs), by targeting mitochondrial metabolism, glycolysis and multiple cell signalling pathways
- in-vitro, BC, MCF-7
Glycolysis↓, MGT might similarly act as a glycolysis inhibitor
GAPDH↓,
ROS↑, Tea cathechins may act both as anti-oxidant and as pro-oxidants
OCR↓,
ECAR↓,
mTOR↓,
OXPHOS↓,

695- EGCG,  TFdiG,    The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention
- in-vitro, NA, HL-60
ROS↑,
IronCh↑,
Apoptosis↑,

20- EGCG,    Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer
- in-vivo, Liver, NA - in-vivo, Tong, NA
HH↓,
Gli1↓,
Smo↓,
TNF-α↓,
COX2↓, EGCG inhibits cyclooxygenase-2 without affecting COX-1 expression at both the mRNA and protein levels, in androgen-sensitive LNCaP and androgen-insensitive PC-3
*antiOx↑, EGCG is a well-known antioxidant and it scavenges most free radicals, such as ROS and RNS
Hif1a↓,
NF-kB↓,
VEGF↓,
STAT3↓,
Bcl-2↓,
P53↑, EGCG activates p53 in human prostate cancer cells
Akt↓,
p‑Akt↓,
p‑mTOR↓,
EGFR↓,
AP-1↓,
BAX↑,
ROS↑, apoptosis was convoyed by ROS production and caspase-3 cleavage
Casp3↑,
Apoptosis↑,
NRF2↑, pancreatic cancer cells via inducing cellular reactive oxygen species (ROS) accumulation and activating Nrf2 signaling
*H2O2↓, EGCG plays a role in the inhibition of H2O2 and NO production in human skin [10].
*NO↓, EGCG plays a role in the inhibition of H2O2 and NO production in human skin [10].
*SOD↑, fig 2
*Catalase↑, fig 2
*GPx↑, fig 2
*ROS↓, fig 2

668- EGCG,    The Potential Role of Epigallocatechin-3-Gallate (EGCG) in Breast Cancer Treatment
- Review, BC, MCF-7 - Review, BC, MDA-MB-231
HER2/EBBR2↓,
EGFR↓,
mtDam↑,
ROS↑,
PI3K/Akt↓,
P53↑,
P21↑,
Casp3↑,
Casp9↑,
BAX↑,
PTEN↑,
Bcl-2↓,
hTERT↓,
STAT3↓,
TumCCA↑, EGCG causes cell cycle arrest by preventing cyclin accumulation D1
Hif1a↓,

676- EGCG,  Chemo,    The Potential of Epigallocatechin Gallate (EGCG) in Targeting Autophagy for Cancer Treatment: A Narrative Review
- Review, NA, NA
PI3k/Akt/mTOR↓,
Apoptosis↑,
ROS↑,
TumAuto↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 33

Results for Effect on Cancer/Diseased Cells:
ACSL4↑,1,   Akt↓,2,   p‑Akt↓,3,   AMPK↑,1,   p‑AMPK↑,1,   angioG↓,2,   AntiAg↑,1,   AP-1↓,2,   Apoptosis↑,7,   ATF4↑,2,   ATG5↑,1,   BAD↑,1,   Bak↑,3,   BAX↑,6,   BAX⇅,1,   BBB↑,1,   Bcl-2↓,6,   Bcl-xL↓,4,   Beclin-1↑,1,   BioAv∅,1,   Ca+2↝,1,   cardioP↑,1,   Casp3↑,8,   cl‑Casp3↑,1,   Casp8↓,1,   Casp8↑,3,   Casp9↑,3,   CDK2↓,1,   CDK4↓,1,   CDK6↓,1,   Ceru↓,1,   chemoP↑,1,   ChemoSen↑,2,   CHOP↑,2,   COX1↓,1,   COX2↓,3,   CTR1↑,1,   cycD1↓,2,   cycE↓,1,   Cyt‑c↑,4,   Diablo↑,1,   DNAdam↑,1,   DNMTs↓,3,   Dose↑,1,   ECAR↓,2,   eff↓,1,   eff↑,4,   EGFR↓,3,   ER Stress↑,2,   ER-α36↓,1,   ERK↓,1,   ERK↑,1,   FAK↓,2,   Fas↑,1,   Fenton↑,1,   Ferroptosis↑,1,   FOXO↑,1,   GAPDH↓,1,   GDH↓,1,   Gli1↓,2,   GLUT3↑,1,   GlutMet↓,1,   Glycolysis↓,3,   GPx↑,1,   GPx4↓,1,   GRP78/BiP↑,3,   H2O2↑,3,   H3↓,1,   Half-Life∅,1,   HATs↓,1,   HDAC↓,2,   HDAC1↓,1,   HER2/EBBR2↓,1,   HGF/c-Met↓,1,   HH↓,2,   Hif1a↓,6,   HK2∅,1,   HO-1↓,1,   HO-1↑,2,   hTERT↓,1,   IGF-1↓,1,   IGF-1R↑,1,   IL6↓,1,   IL8↓,1,   Iron↑,1,   IronCh↑,1,   JAK↓,1,   JNK↓,1,   JNK↑,1,   Jun↓,1,   JWA↑,1,   Keap1↓,2,   Ki-67↓,1,   lactateProd↓,1,   LC3B↑,1,   LC3II↑,1,   LDHA∅,1,   MAPK↓,1,   Mcl-1↓,1,   MCP1↓,1,   MDA↑,1,   MDM2↑,1,   miR-210↓,1,   MMP↓,3,   MMP↑,1,   MMP2↓,1,   MMP9↓,2,   MMPs↓,2,   mtDam↑,1,   mTOR↓,3,   p‑mTOR↓,1,   Myc↓,1,   NF-kB↓,4,   NOTCH↓,1,   NOTCH3↓,1,   NRF2↓,1,   NRF2↑,4,   OCR↓,1,   OXPHOS↓,2,   p16↑,1,   P21↑,2,   p27↑,1,   p38↑,1,   P53↑,6,   PARP↑,2,   cl‑PARP↑,1,   PCNA↓,1,   PDGF↓,1,   PDHA1↓,1,   PFK↓,1,   PFKP↓,1,   PI3K/Akt↓,1,   PI3k/Akt/mTOR↓,1,   PKA↓,1,   PKM2↓,1,   cl‑PPARα↓,1,   pRB↑,1,   Prx↓,1,   PTEN↑,3,   RANTES?,1,   RNS↓,1,   ROS↓,2,   ROS↑,24,   ROS⇅,1,   mt-ROS↓,1,   selectivity↑,4,   Smo↓,2,   SOD↑,1,   STAT↓,1,   STAT3↓,2,   survivin↓,1,   Telomerase↓,3,   TIMP1↑,1,   TIMP2↑,1,   TNF-α↓,2,   toxicity∅,1,   TP53↓,1,   Trx↓,2,   Trx1↓,1,   TrxR↓,2,   TumAuto↑,1,   TumCCA↑,1,   TumCG↓,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,4,   TumW↓,1,   uPA↓,2,   uPA↝,1,   UPR↑,3,   VEGF↓,4,   Vim↓,1,   Wnt↑,1,   XBP-1↑,1,   XIAP↓,1,   Zeb1↑,1,   β-catenin/ZEB1↓,1,  
Total Targets: 177

Results for Effect on Normal Cells:
AntiCan↑,1,   antiOx?,1,   antiOx↑,5,   AP-1↓,1,   Apoptosis↓,2,   ASC↓,1,   BAX↓,1,   BBB↑,1,   BioAv↓,2,   BioAv↑,1,   BioAv↝,1,   Ca+2?,1,   Ca+2↓,1,   i-Ca+2↓,1,   cardioP↑,3,   Casp1↓,1,   Casp12↓,1,   Casp3↓,1,   Catalase↑,3,   CHOP↓,1,   COX2↓,1,   Cyt‑c↓,1,   Dose↝,1,   Dose∅,1,   E2Fs↑,1,   ER Stress↓,1,   glucose↓,1,   GPx↑,1,   GRP78/BiP↓,2,   H2O2↓,1,   Half-Life↝,1,   hepatoP↓,1,   HO-1↑,3,   IGF-1R↓,1,   IL18↓,1,   IL1β↓,1,   IL6↓,2,   IL8↓,1,   Inflam↓,2,   iNOS↓,1,   IRE1↓,1,   JAK↓,1,   LDH↓,1,   LDL↓,1,   memory↑,1,   MMP↑,1,   MMP2↓,2,   MPO↓,1,   neuroP↑,2,   NF-kB↓,2,   NLRP3↓,1,   NO↓,2,   NQO1↑,1,   NRF2↓,1,   NRF2↑,4,   other↓,1,   P53↓,1,   p‑PARP↓,1,   PDGFR-BB↓,1,   PERK↓,1,   RenoP↑,1,   RNS↓,1,   ROS↓,10,   SOD↑,3,   SOD1↑,1,   SOD2↑,1,   TNF-α↓,2,   Trx1↑,1,   TXNIP↓,1,   UPR↓,2,   VEGF↓,1,  
Total Targets: 71

Scientific Paper Hit Count for: ROS, Reactive Oxygen Species
33 EGCG (Epigallocatechin Gallate)
2 Chemotherapy
1 Selenium
1 Aflavin-3,3′-digallate
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:73  Target#:275  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page