condition found tbRes List
EGCG, EGCG (Epigallocatechin Gallate): Click to Expand ⟱
Features:
EGCG (Epigallocatechin Gallate) is found in green tea. 100 times more effective than Vitamin C and 25 times more effective than Vitamin E at protecting cells from damage associated with oxidative stress.
EGCG Epigallocatechin Gallate (Green Tea) -Catechin
Summary:
1. Concentration is a factor that could determine whether green tea polyphenols act as antioxidants or pro-oxidants.
2. Poor bioavailability: taking EGCG capsules without food was better.
3. Cancer dosage 4g/day (2g twice per day)? with curcumin may help (another ref says 700–2100 mg/d)
4. EGCG is susceptible to oxidative degradation.
5. “As for the pH level, the acidic environments enhance the stability of EGCG”.
6. “EGCG may enhance nanoparticle uptake by tumor cells”
7. Might be iron chelator (removing iron from cancer cells)
8. Claimed as synergistic effect with chemotherapy ( cisplatin, bleomycin, gemcitabine.
9. May suppress glucose metabolism, interfere with VEGF, downregulate NF-κB and MMP-9, down-regulation of androgen-regulated miRNA-21.
10. Take with red pepper powder, Capsicum ratio 25:1 (based on half life, they did every 4 hr) (chili pepper vanilloid capsaicin).
11. EGCG mediated ROS formation can upregulate CTR1 expression via the ERK1/2/NEAT1 pathway, which can increase the intake of chemotherapeutic drugs such as cisplatin in NSCLC cells and act as a chemosensitizer [58]
12. Matcha green tea has highest EGCG (2-3X) because consuming leaf.
13. EGCG is an ENOX2 inhibitor.
14. Nrf2 activator in both cancer and normal cells. This example of lung cancer show both directions in different cell lines, but both toward optimim level.
Biological activity, EGCG has been reported to exhibit a range of effects, including:
    Antioxidant activity: 10-50 μM
     Anti-inflammatory activity: 20-50 μM
     Anticancer activity: 50-100 μM
     Cardiovascular health: 20-50 μM
     Neuroprotective activity: 10-50 μM

Drinking a cup (or two cups) of green tea (in which one might ingest roughly 50–100 mg of EGCG from brewed tea) generally results in peak plasma EGCG concentrations in the range of approximately 0.1 to 0.6 μM.

With higher, supplement-type doses (e.g., oral doses in the 500 mg–800 mg range that are sometimes studied for clinical benefits), peak plasma concentrations in humans can reach the low micromolar range, often reported around ~1–2 μM and in some cases up to 5 μM.

Reported values can range from about 25–50 mg of EGCG per gram of matcha powder.
In cases where the matcha is exceptionally catechin-rich, the content could reach 200–250 mg or more in 5 g.

-Peak plasma concentration roughly 1 to 2 hours after oral ingestion.
-Elimination half-life of EGCG in plasma is commonly reported to be in the range of about 3 to 5 hours.

Supplemental EGCG
Dose (mg)   ≈ Peak Plasma EGCG (µM)
~50 mg          ≈ 0.1–0.3 µM
~100 mg         ≈ 0.2–0.6 µM
~250 mg         ≈ 0.5–1.0 µM
~500 mg         ≈ 1–2 µM
~800 mg or higher  ≈ 1–5 µM

50mg of EGCG in 1g of matcha tea(1/2 teaspoon)

Studies on green tea extracts have employed doses roughly equivalent to 300–800 mg/day of EGCG. Excessive doses can cause liver toxicity in some cases.

Methods to improve bioavailability
-Lipid-based carriers or nanoemulsions
-Polymer-based nanoparticles or encapsulation
-Co-administration with ascorbic acid (vitamin C)
-Co-administration of adjuvants like piperine (perhaps sunflower lecithin and chitosan) -Using multiple smaller doses rather than one large single dose.
-Taking EGCG on an empty stomach or under fasting conditions, or aligning dosing with optimal pH conditions in the GI tract, may improve its absorption.(acidic environment is generally more favorable for its stability and absorption).
– EGCG is more stable under acidic conditions. In the stomach, where the pH is typically around 1.5 to 3.5, EGCG is less prone to degradation compared to the more neutral or basic environments of the small intestine.
- At neutral (around pH 7) or alkaline pH, EGCG undergoes auto-oxidation, reducing the effective concentration available for absorption.
– Although the stomach’s acidic pH helps maintain EGCG’s stability, most absorption occurs in the small intestine, where the pH is closer to neutral.
– To counterbalance the inherent instability in the intestine, strategies such as co-administration of pH-modifying agents (like vitamin C) are sometimes used. These agents help to maintain a slightly acidic environment in the gut microenvironment, potentially improving EGCG stability during its transit and absorption.
– The use of acidifiers or buffering agents in supplements may help preserve EGCG until it reaches the absorption sites.

-Note half-life 3–5 hours.
- low BioAv 1%? despite its limited absorption, it is rapidly disseminated throughout the body
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Does NOT Lower AntiOxidant defense in Cancer Cells: NRF2↑, TrxR↓**, SOD, GSH Catalase HO1 GPx
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, Notch↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective(possible damage at high dose), CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


selectivity, selectivity: Click to Expand ⟱
Source:
Type:
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues.

Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance

Factors that affect selectivity:
1. Ability of Cancer cells to preferentially absorb a product/drug
-EPR-enhanced permeability and retention of cancer cells
-nanoparticle formations/carriers may target cancer cells over normal cells
-Liposomal formations. Also negatively/positively charged affects absorbtion

2. Product/drug effect may be different for normal vs cancer cells
- hypoxia
- transition metal content levels (iron/copper) change probability of fenton reaction.
- pH levels
- antiOxidant levels and defense levels

3. Bio-availability


Scientific Papers found: Click to Expand⟱
1503- EGCG,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
selectivity↑, EGCG has been shown to induce apoptosis and cell cycle arrest in many cancer cells without affecting normal cells
DNMT1↓, inhibition of DNMT1 leading to demethylation and reactivation of methylation-silenced genes.
RECK↑, EGCG-induced epigenetic reactivation of RECK
MMPs↓, negatively regulates matrix metalloproteinases (MMPs)
TumCI↓, inhibits tumor invasion, angiogenesis, and metastasis
angioG↓,
TumMeta↓,
HATs↓, EGCG has strong HAT inhibitory activity
IκB↑, increases the level of cytosolic IκBα
NF-kB↓, suppresses tumor necrosis factor α-induced NF-κB activation
IL6↓,
COX2↓,
NOS2↓,
ac‑H3↑, increased the levels of acetylated histone H3 (LysH9/18) and H4 levels
ac‑H4↑,
eff↑, EGCG may synergize with the HDAC inhibitory action of vorinostat to help de-repress silenced tumor suppressor genes regulating key functions such as proliferation and cell survival

1514- EGCG,    Preferential inhibition by (-)-epigallocatechin-3-gallate of the cell surface NADH oxidase and growth of transformed cells in culture
- in-vitro, Cerv, HeLa - in-vitro, Nor, MCF10
selectivity↑, EGCg preferentially inhibited growth of HeLa and mammary adenocarcinoma cells compared with growth of mammary epithelial cells
*toxicity∅, Mammary epithelial cells recovered from EGCg treatment even at 50 mM
TumCG↓, growth of HeLa and mammary adenocarcinoma cells was inhibited by EGCg at concentrations as low as 1 mM. With repeated additions of 100 nM EGCg (every 2 hr during the day), growth was inhibited during the day but recovered during the night
NADHdeh?,
eff↑, Green tea infusions were approximately 10 times more effective than those of black tea and contained approximately 10 times more EGCg
ENOX2↓, EGCg inhibit the NADH oxidase(ENOX2) of plasma membrane vesicles from cancer cells and not that of normal cells,
Dose?, with repeated additions (twice daily) at 1 mM EGCg, the EGCg concentration achieving complete inhibition of tNOX in BT-20 cells, growth inhibition and apoptosis in BT-20 cells were achieved.

1515- EGCG,  Phen,    Reciprocal Relationship Between Cytosolic NADH and ENOX2 Inhibition Triggers Sphingolipid-Induced Apoptosis in HeLa Cells
- in-vitro, Cerv, HeLa - in-vitro, Nor, MCF10 - in-vitro, BC, BT20
selectivity↑, ENOX2 INHIBITORS SLOW THE GROWTH OF HeLa CELLS AND INDUCE APOPTOSIS IN CANCER BUT NOT IN NON-CANCER CELLS
ENOX2↓,
NADH↑, INCREASED NADH RESULTING FROM ENOX2 CELL SURFACE INHIBITION INHIBITS PLASMA MEMBRANE-ASSOCIATED SPHINGOSINE KINASE (SK) AND LOWERS LEVELS OF PRO-SURVIVAL SPHINGOSINE-1-PHOSPHATE (S1P
SK↓, SK activity was decreased in response to 1.5 mM NADH
eff↑, Capsaicin added to block NADH oxidation by endo- genous ENOX2 was without effect when added alone but enhanced inhibition slightly when combined with 1.5 mM NADH
aSmase↑, SMase activity was stimulated by NADH

2309- EGCG,  Chemo,    Targeting Glycolysis with Epigallocatechin-3-Gallate Enhances the Efficacy of Chemotherapeutics in Pancreatic Cancer Cells and Xenografts
- in-vitro, PC, MIA PaCa-2 - in-vitro, Nor, HPNE - in-vitro, PC, PANC1 - in-vivo, NA, NA
TumCG↓, EGCG reduced pancreatic cancer cell growth in a concentration-dependent manner
eff↑, and the growth inhibition effect was further enhanced under glucose deprivation conditions.
ROS↑, EGCG at 40 µM increased ROS levels by 1.4- and 1.6-fold in Panc-1 and MIA PaCa-2 cells, respectively
ECAR↓, EGCG affected glycolysis by suppressing the extracellular acidification rate through the reduction of the activity and levels of the glycolytic enzymes phosphofructokinase and pyruvate kinase.
ChemoSen↑, EGCG sensitized gemcitabine to inhibit pancreatic cancer cell growth in vitro and in vivo.
selectivity↑, EGCG at 80 µM for 72 h had significantly less effect on the HPNE cells, reducing cell growth by only 24%
Glycolysis↓, EGCG Inhibits Glycolysis through Suppressing Rate-Limiting Enzymes. EGCG Plus Gemcitabine Further Inhibits Glycolysis
PFK↓, EGCG treatment reduced both the activity and expression levels of phosphofructokinase (PFK) and pyruvate kinase (PK) in Panc-1 and MIA PaCa-2 cells
PKA↓,
HK2∅, EGCG failed to reduce hexokinases II (HK2) and lactate dehydrogenase A (LDHA) protein expression levels
LDHA∅,
PFKP↓, EGCG reduced the levels of PFKP and PKM2 (p < 0.01 for both) in pancreatic tumor xenograft homogenates, obtained from mice treated with EGCG
PKM2↓,
H2O2↑, EGCG at 40 µM increased H2O2 levels by 1.5- and 1.9-fold in Panc-1 and MIA PaCa-2 cells
TumW↓, EGCG and gemcitabine, given as single agents, reduced tumor weight by 40% and 52%, respectively, compared to vehicle-treated controls (p < 0.05 and p < 0.01). In combination, EGCG plus gemcitabine reduced tumor weight by 67%,

3238- EGCG,    Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications
- Review, Var, NA
Telomerase↓, EGCG stimulates telomere fragmentation through inhibiting telomerase activity.
DNMTs↓, EGCG reduced DNMTs,
cycD1↓, EGCG also reduced the protein expression of cyclin D1, cyclin E, CDK2, CDK4, and CDK6. EGCG also inhibited the activity of CDK2 and CDK4, and caused Rb hypophosphorylation
cycE↓,
CDK2↓,
CDK4↓,
CDK6↓,
HATs↓, EGCG can inhibit certain biomedically important molecular targets such as DNMTs, HATs, and HDACs
HDAC↓,
selectivity↑, EGCG has shown higher cytotoxicity in cancer cells than in their normal counterparts.
uPA↓, EGCG blocks urokinase, an enzyme which is essential for cancer growth and metastasis
NF-kB↓, EGCG inhibits NFκB and expression of TNF-α, reduces cancer promotion
TNF-α↓,
*ROS↓, It acts as strong ROS scavenger and antioxidant,
*antiOx↑,
Hif1a↓, ↓ HIF-1α; ↓ VEGF; ↓ VEGFR1;
VEGF↓,
MMP2↓, ↓ MMP-2; ↓ MMP-9; ↓ FAK;
MMP9↓,
FAK↓,
TIMP2↑, TIMP-2; ↑
Mcl-1↓, ↓ Mcl-1; ↓ survivin; ↓ XIAP
survivin↓,
XIAP↓,
PCNA↓, ↓ PCNA; ↑ 16; ↑ p18; ↑ p21; ↑ p27; ↑ pRb; ↑ p53; ↑ mdm2
p16↑,
P21↑,
p27↑,
pRB↑,
P53↑,
MDM2↑,
ROS↑, ↑ ROS; ↑ caspase-3; ↑ caspase-8; ↑ caspase-9; ↑ cytochrome c; ↑ Smac/DIABLO; ↓↑ Bax; Z Bak; ↓ cleaved PPAR;
Casp3↑,
Casp8↑,
Casp9↑,
Cyt‑c↑,
Diablo↑,
BAX⇅,
cl‑PPARα↓,
PDGF↓, ↓ PDGF; ↓ PDGFRb; ↓ EGFR;
EGFR↓,
FOXO↑, activated FOXO transcription factors
AP-1↓, The inhibition of AP-1 activity by EGCG was associated with inhibition of JNK activation but not ERK activation.
JNK↓,
COX2↓, EGCG reduces the activity of COX-2 following interleukin-1A stimulation of human chondrocytes
angioG↓, EGCG inhibits angiogenesis by enhancing FOXO transcriptional activity

3214- EGCG,    EGCG-induced selective death of cancer cells through autophagy-dependent regulation of the p62-mediated antioxidant survival pathway
- in-vitro, Nor, MRC-5 - in-vitro, Cerv, HeLa - in-vitro, Nor, HEK293 - in-vitro, BC, MDA-MB-231 - in-vitro, CRC, HCT116
mTOR↓, In contrast, EGCG treatment in HeLa cells led to AMPK-induced mTOR inactivation
AMPK↑, via AMPK activation,
selectivity↑, EGCG was previously reported to differentially induce ROS production in normal and cancer cells, resulting in the preferential perturbation of the redox homeostasis of cancer cells via increased ROS levels, especially H2O2, in cancer cells
ROS↑,
selectivity↑, EGCG-induced selective death of cancer cells is accomplished by the positive and negative regulation of the p62-KEAP1-NRF2-HO-1 antioxidant survival pathway between normal cells and cancer cells, respectively,
HO-1↓, HO-1 expression decreased significantly with increasing EGCG concentration in all six different cancer cells
*NRF2↑, According to our findings, EGCG increased the protein level of NRF2 in normal cells but decreased them in cancer cells even though its mRNA levels were more or less equal in both cell types
NRF2↓,
*HO-1↑, upregulates HO-1 through the prolonged stability of NRF2 in MRC5 cells, whereas it downregulates HO-1 through the increased degradation of NRF2 by ubiquitination in HeLa and HCT116 cells.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
AMPK↑,1,   angioG↓,2,   AP-1↓,1,   aSmase↑,1,   BAX⇅,1,   Casp3↑,1,   Casp8↑,1,   Casp9↑,1,   CDK2↓,1,   CDK4↓,1,   CDK6↓,1,   ChemoSen↑,1,   COX2↓,2,   cycD1↓,1,   cycE↓,1,   Cyt‑c↑,1,   Diablo↑,1,   DNMT1↓,1,   DNMTs↓,1,   Dose?,1,   ECAR↓,1,   eff↑,4,   EGFR↓,1,   ENOX2↓,2,   FAK↓,1,   FOXO↑,1,   Glycolysis↓,1,   H2O2↑,1,   ac‑H3↑,1,   ac‑H4↑,1,   HATs↓,2,   HDAC↓,1,   Hif1a↓,1,   HK2∅,1,   HO-1↓,1,   IL6↓,1,   IκB↑,1,   JNK↓,1,   LDHA∅,1,   Mcl-1↓,1,   MDM2↑,1,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   mTOR↓,1,   NADH↑,1,   NADHdeh?,1,   NF-kB↓,2,   NOS2↓,1,   NRF2↓,1,   p16↑,1,   P21↑,1,   p27↑,1,   P53↑,1,   PCNA↓,1,   PDGF↓,1,   PFK↓,1,   PFKP↓,1,   PKA↓,1,   PKM2↓,1,   cl‑PPARα↓,1,   pRB↑,1,   RECK↑,1,   ROS↑,3,   selectivity↑,7,   SK↓,1,   survivin↓,1,   Telomerase↓,1,   TIMP2↑,1,   TNF-α↓,1,   TumCG↓,2,   TumCI↓,1,   TumMeta↓,1,   TumW↓,1,   uPA↓,1,   VEGF↓,1,   XIAP↓,1,  
Total Targets: 77

Results for Effect on Normal Cells:
antiOx↑,1,   HO-1↑,1,   NRF2↑,1,   ROS↓,1,   toxicity∅,1,  
Total Targets: 5

Scientific Paper Hit Count for: selectivity, selectivity
6 EGCG (Epigallocatechin Gallate)
1 PXD, phenoxodiol
1 Chemotherapy
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:73  Target#:1110  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page