condition found tbRes List
EGCG, EGCG (Epigallocatechin Gallate): Click to Expand ⟱
Features:
EGCG (Epigallocatechin Gallate) is found in green tea. 100 times more effective than Vitamin C and 25 times more effective than Vitamin E at protecting cells from damage associated with oxidative stress.
EGCG Epigallocatechin Gallate (Green Tea) -Catechin
Summary:
1. Concentration is a factor that could determine whether green tea polyphenols act as antioxidants or pro-oxidants.
2. Poor bioavailability: taking EGCG capsules without food was better.
3. Cancer dosage 4g/day (2g twice per day)? with curcumin may help (another ref says 700–2100 mg/d)
4. EGCG is susceptible to oxidative degradation.
5. “As for the pH level, the acidic environments enhance the stability of EGCG”.
6. “EGCG may enhance nanoparticle uptake by tumor cells”
7. Might be iron chelator (removing iron from cancer cells)
8. Claimed as synergistic effect with chemotherapy ( cisplatin, bleomycin, gemcitabine.
9. May suppress glucose metabolism, interfere with VEGF, downregulate NF-κB and MMP-9, down-regulation of androgen-regulated miRNA-21.
10. Take with red pepper powder, Capsicum ratio 25:1 (based on half life, they did every 4 hr) (chili pepper vanilloid capsaicin).
11. EGCG mediated ROS formation can upregulate CTR1 expression via the ERK1/2/NEAT1 pathway, which can increase the intake of chemotherapeutic drugs such as cisplatin in NSCLC cells and act as a chemosensitizer [58]
12. Matcha green tea has highest EGCG (2-3X) because consuming leaf.
13. EGCG is an ENOX2 inhibitor.
14. Nrf2 activator in both cancer and normal cells. This example of lung cancer show both directions in different cell lines, but both toward optimim level.
Biological activity, EGCG has been reported to exhibit a range of effects, including:
    Antioxidant activity: 10-50 μM
     Anti-inflammatory activity: 20-50 μM
     Anticancer activity: 50-100 μM
     Cardiovascular health: 20-50 μM
     Neuroprotective activity: 10-50 μM

Drinking a cup (or two cups) of green tea (in which one might ingest roughly 50–100 mg of EGCG from brewed tea) generally results in peak plasma EGCG concentrations in the range of approximately 0.1 to 0.6 μM.

With higher, supplement-type doses (e.g., oral doses in the 500 mg–800 mg range that are sometimes studied for clinical benefits), peak plasma concentrations in humans can reach the low micromolar range, often reported around ~1–2 μM and in some cases up to 5 μM.

Reported values can range from about 25–50 mg of EGCG per gram of matcha powder.
In cases where the matcha is exceptionally catechin-rich, the content could reach 200–250 mg or more in 5 g.

-Peak plasma concentration roughly 1 to 2 hours after oral ingestion.
-Elimination half-life of EGCG in plasma is commonly reported to be in the range of about 3 to 5 hours.

Supplemental EGCG
Dose (mg)   ≈ Peak Plasma EGCG (µM)
~50 mg          ≈ 0.1–0.3 µM
~100 mg         ≈ 0.2–0.6 µM
~250 mg         ≈ 0.5–1.0 µM
~500 mg         ≈ 1–2 µM
~800 mg or higher  ≈ 1–5 µM

50mg of EGCG in 1g of matcha tea(1/2 teaspoon)

Studies on green tea extracts have employed doses roughly equivalent to 300–800 mg/day of EGCG. Excessive doses can cause liver toxicity in some cases.

Methods to improve bioavailability
-Lipid-based carriers or nanoemulsions
-Polymer-based nanoparticles or encapsulation
-Co-administration with ascorbic acid (vitamin C)
-Co-administration of adjuvants like piperine (perhaps sunflower lecithin and chitosan) -Using multiple smaller doses rather than one large single dose.
-Taking EGCG on an empty stomach or under fasting conditions, or aligning dosing with optimal pH conditions in the GI tract, may improve its absorption.(acidic environment is generally more favorable for its stability and absorption).
– EGCG is more stable under acidic conditions. In the stomach, where the pH is typically around 1.5 to 3.5, EGCG is less prone to degradation compared to the more neutral or basic environments of the small intestine.
- At neutral (around pH 7) or alkaline pH, EGCG undergoes auto-oxidation, reducing the effective concentration available for absorption.
– Although the stomach’s acidic pH helps maintain EGCG’s stability, most absorption occurs in the small intestine, where the pH is closer to neutral.
– To counterbalance the inherent instability in the intestine, strategies such as co-administration of pH-modifying agents (like vitamin C) are sometimes used. These agents help to maintain a slightly acidic environment in the gut microenvironment, potentially improving EGCG stability during its transit and absorption.
– The use of acidifiers or buffering agents in supplements may help preserve EGCG until it reaches the absorption sites.

-Note half-life 3–5 hours.
- low BioAv 1%? despite its limited absorption, it is rapidly disseminated throughout the body
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Does NOT Lower AntiOxidant defense in Cancer Cells: NRF2↑, TrxR↓**, SOD, GSH Catalase HO1 GPx
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓">NF-kB, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, Notch↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective(possible damage at high dose), CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


NF-kB, Nuclear factor kappa B: Click to Expand ⟱
Source: HalifaxProj(inhibit)
Type:
NF-kB signaling
Nuclear factor kappa B (NF-κB) is a transcription factor that plays a crucial role in regulating immune response, inflammation, cell proliferation, and survival.
NF-κB is often found to be constitutively active in many types of cancer cells. This persistent activation can promote tumorigenesis by enhancing cell survival, proliferation, and metastasis.


Scientific Papers found: Click to Expand⟱
147- AG,  EGCG,  CUR,    Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, MCF-7
Bax:Bcl2↑,
NF-kB↓,
PI3K/Akt↓,
STAT3↓,

2992- EGCG,    Effects of Epigallocatechin-3-Gallate on Matrix Metalloproteinases in Terms of Its Anticancer Activity
- Review, Var, NA
AP-1↓, MMPs have binding sites for at least one transcription factor of AP-1, Sp1, and NF-κB, and EGCG can downregulate these transcription factors through signaling pathways mediated by reactive oxygen species
Sp1/3/4↓,
NF-kB↓,
ERK↓, EGCG can also decrease nuclear ERK, p38, heat shock protein-27 (Hsp27), and β-catenin levels, leading to suppression of MMPs’ expression.
P-gp↓,
HSP27↓,
β-catenin/ZEB1↓,
MMPs↓,
TNF-α↓, suppress the production of inflammatory cytokines such as TNFα and IL-1β.
IL1β↓,
MMP2↓, EGCG inhibited MMP2 secretion in glioblastoma cells.

2994- EGCG,    Nano-Engineered Epigallocatechin Gallate (EGCG) Delivery Systems: Overcoming Bioavailability Barriers to Unlock Clinical Potential in Cancer Therapy
- Review, Var, NA
BioAv↓, Despite its therapeutic promise, clinical application is constrained by rapid metabolism, poor bioavailability, and inconsistent biodistribution.
NF-kB↓, EGCG modulates oncogenic pathways via NF-κB suppression, caspase activation, and MMP-9 downregulation, demonstrating efficacy across diverse cancer types.
Casp↑,
MMP9↑,
Sp1/3/4↑, marked decrease in Sp1 activity

3201- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*AntiCan↑, EGCG’s therapeutic potential in preventing and managing a range of chronic conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes
*cardioP↑,
*neuroP↑,
*BioAv↝, Factors such as fasting, storage conditions, albumin levels, vitamin C, fish oil, and piperine have been shown to affect plasma concentrations and the overall bioavailability of EGCG
*BioAv↓, Conversely, bioavailability is reduced by processes such as air oxidation, sulfation, glucuronidation, gastrointestinal degradation, and interactions with Ca2+, Mg2+, and trace metals,
*BioAv↓, EGCG’s oral bioavailability is generally low, with marked differences observed across species, for example, bioavailability rates of 26.5% in CF-1 mice and just 1.6% in Sprague Dawley rats
*Dose↝, plasma concentrations exceeded 1 μM only when doses of 1 g or higher were administered.
*Half-Life↝, Specifically, a dose of 1600 mg yielded a Cmax of 3392 ng/mL (range: 130–3392 ng/mL), with peak levels observed between 1.3 and 2.2 h, AUC (0–∞) values ranging from 442 to 10,368 ng·h/mL, and a half-life (t1/2z) of 1.9 to 4.6 h.
*BioAv↑, Studies on the distribution of EGCG have revealed that, despite its limited absorption, it is rapidly disseminated throughout the body or quickly converted into metabolites
*BBB↑, Additionally, EGCG can cross the blood–brain barrier, allowing it to reach the brain
*hepatoP↓, Several studies have documented liver damage linked to green tea consumption [48,49,50,51,52,53].
*other↓, EGCG has also been shown to inhibit the intestinal absorption of non-heme iron in a dose-dependent manner in a controlled clinical trial
*Inflam↓, EGCG has been widely recognized for its anti-inflammatory effects
*NF-kB↓, EGCG has been shown to suppress NF-κB activation, inhibit its nuclear translocation, and block AP-1 activity
*AP-1↓,
*iNOS↓, downregulation of pro-inflammatory enzymes like iNOS and COX-2 and scavenging of ROS/RNS, including nitric oxide and peroxynitrite
*COX2↓,
*ROS↓,
*RNS↓,
*IL8↓, EGCG has been shown to suppress airway inflammation by reducing IL-8 release, a cytokine involved in neutrophil aggregation and ROS production.
*JAK↓, EGCG blocks the JAK1/2 signaling pathway
*PDGFR-BB↓, downregulate PDGFR and IGF-1R gene expression
*IGF-1R↓,
*MMP2↓, reduce MMP-2 mRNA expression
*P53↓, downregulation of the p53-p21 signaling pathway and the enhanced expression of Nrf2
*NRF2↑,
*TNF-α↓, 25 to 100 μM reduced the levels of TNF-α, IL-6, and ROS while enhancing the expression of E2F2 and superoxide dismutases (SOD1 and SOD2), enzymes vital for cellular antioxidant defense.
*IL6↓,
*E2Fs↑,
*SOD1↑,
*SOD2↑,
Casp3↑, EGCG has been shown to activate key apoptotic pathways, such as caspase-3 activation, cytochrome c release, and PARP cleavage, in various cell models, including PC12 cells exposed to oxidative stress
Cyt‑c↑,
PARP↑,
DNMTs↓, (1) the inhibition of DNA hypermethylation by blocking DNA methyltransferase (DNMT)
Telomerase↓, (2) the repression of telomerase activity;
Hif1a↓, (3) the suppression of angiogenesis via the inhibition of HIF-1α and NF-κB;
MMPs↓, (4) the prevention of cellular metastasis by inhibiting matrix metalloproteinases (MMPs);
BAX↑, (5) the promotion of apoptosis through the activation of pro-apoptotic proteins like BAX and BAK
Bak↑,
Bcl-2↓, while downregulating anti-apoptotic proteins like BCL-2 and BCL-XL;
Bcl-xL↓,
P53↑, (6) the upregulation of tumor suppressor genes such as p53 and PTEN;
PTEN↑,
TumCP↓, (7) the inhibition of inflammation and proliferation via NF-κB suppression;
MAPK↓, (8) anti-proliferative activity through the modulation of MAPK and IGF1R pathways
HGF/c-Met↓, EGCG inhibits hepatocyte growth factor (HGF), which is involved in tumor migration and invasion
TIMP1↑, EGCG has also been shown to influence the expression of tissue inhibitors of metalloproteinases (TIMPs) and MMPs, which are involved in tumorigenesis
HDAC↓, nhibition of UVB-induced DNA hypomethylation and modulation of DNMT and histone deacetylase (HDAC) activities
MMP9↓, inhibiting MMPs such as MMP-2 and MMP-9
uPA↓, EGCG may block urokinase-like plasminogen activator (uPA), a protease involved in cancer progression
GlutMet↓, EGCG can exert antitumor effects by inhibiting glycolytic enzymes, reducing glucose metabolism, and further suppressing cancer-cell growth
ChemoSen↑, EGCG’s combination with standard chemotherapy drugs may enhance their efficacy through additive or synergistic effects, while also mitigating chemotherapy-related side effects
chemoP↑,

3205- EGCG,    The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseas
- Review, Var, NA - Review, AD, NA
Beclin-1↑, EGCG not only regulates autophagy via increasing Beclin-1 expression and reactive oxygen species generation,
ROS↑,
Apoptosis↑, Apoptosis is a common cell function in biology and is induced by endoplasmic reticulum stress (ERS)
ER Stress↑,
*Inflam↓, EGCG has health benefits including anti-tumor [15], anti-inflammatory [16], anti-diabetes [17], anti-myocardial infarction [18], anti-cardiac hypertrophy [19], anti-atherosclerosis [20], and antioxidant
*cardioP↑,
*antiOx?,
*LDL↓, These effects are mainly related to (LDL) cholesterol inhibition, NF-κB inhibition, MPO activity inhibition, decreased levels of glucose and glycated hemoglobin in plasma, decreased inflammatory markers, and reduced ROS generation
*NF-kB↓,
*MPO↓,
*glucose↓,
*ROS↓,
ATG5↑, EGCG induced autophagy by enhancing Beclin-1, ATG5, and LC3B and promoted mitochondrial depolarization in breast cancer cells.
LC3B↑,
MMP↑,
lactateProd↓, 20 mg kg−1 EGCG significantly decreased glucose, lactic acid, and vascular endothelial growth factor (VEGF) levels
VEGF↓,
Zeb1↑, (20 uM) inhibited the proliferation through activating autophagy via upregulating ZEB1, WNT11, IGF1R, FAS, BAK, and BAD genes and inhibiting TP53, MYC, and CASP8 genes in SSC-4 human oral squamous cells [
Wnt↑,
IGF-1R↑,
Fas↑,
Bak↑,
BAD↑,
TP53↓,
Myc↓,
Casp8↓,
LC3II↑, increasing the LC3-II expression levels and induced apoptosis via inducing ROS in mesothelioma cell lines,
NOTCH3↓, but also could reduce partially Notch3/DLL3 to reduce drug-resistance and the stemness of tumor cells
eff↑, In combination therapies, low-intensity pulsed electric field (PEF) can improve EGCG to affect tumor cells; ultrasound (US) with tumor cells is the application of physical stimulation in cancer therapy.
p‑Akt↓, 20 μM EGCG increased intracellular ROS levels and LC3-II, and inhibited p-Akt in PANC-1 cells
PARP↑, 100 μM EGCG increased LC3-II, activated caspase-3 and PARP, and reduced p-Akt in HepG2
*Cyt‑c↓, EGCG protected neuronal cells against human viruses by inhibiting cytochrome c and Bax translocations, and reducing autophagy with increased LC3-II expression and decreased p62 expression
*BAX↓,
*memory↑, EGCG restored autophagy in the mTOR/p70S6K pathway to weaken memory and learning disorders induced by CUMS
*neuroP↑, Finally, EGCG increased the neurological scores through inhibiting cell death
*Ca+2?, EGCG treatment, [Ca2+]m and [Ca2+]i expressions were reduced and oxyhemoglobin-induced mitochondrial dysfunction lessened.
GRP78/BiP↑, MMe cells with EGCG treatment improved GRP78 expression in the endoplasmic reticulum, and induced EDEM, CHOP, XBP1, and ATF4 expressions, and increased the activity of caspase-3 and caspase-8.
CHOP↑, GRP78 accumulation converted UPR of MMe cells into pro-apoptotic ERS
ATF4↑,
Casp3↑,
Casp8↑,
UPR↑,

1503- EGCG,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
selectivity↑, EGCG has been shown to induce apoptosis and cell cycle arrest in many cancer cells without affecting normal cells
DNMT1↓, inhibition of DNMT1 leading to demethylation and reactivation of methylation-silenced genes.
RECK↑, EGCG-induced epigenetic reactivation of RECK
MMPs↓, negatively regulates matrix metalloproteinases (MMPs)
TumCI↓, inhibits tumor invasion, angiogenesis, and metastasis
angioG↓,
TumMeta↓,
HATs↓, EGCG has strong HAT inhibitory activity
IκB↑, increases the level of cytosolic IκBα
NF-kB↓, suppresses tumor necrosis factor α-induced NF-κB activation
IL6↓,
COX2↓,
NOS2↓,
ac‑H3↑, increased the levels of acetylated histone H3 (LysH9/18) and H4 levels
ac‑H4↑,
eff↑, EGCG may synergize with the HDAC inhibitory action of vorinostat to help de-repress silenced tumor suppressor genes regulating key functions such as proliferation and cell survival

1516- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*Dose∅, A pharmacokinetic study in healthy individuals receiving single doses of EGCGrevealed that plasma concentrations exceeded 1 μM only with doses of >1 g
Half-Life∅, peak levels observed between 1.3 and 2.2 h (and a half-life (t1/2z) of 1.9 to 4.6 h)
BioAv∅, oral bioavailability of 20.3% relative to intravenous admistration
BBB↑, EGCG can cross the blood–brain barrier, allowing it to reach the brain
toxicity∅, Isbrucher et al. found no evidence of genotoxicity in rats following oral administration of EGCG at doses of 500, 1000, or 2000 mg/kg, or intravenous injections of 10, 25, or 50 mg/kg/day.
eff↓, interaction with the folate transporter has been reported, leading to reduced bioavailability of folic acid
Apoptosis↑,
Casp3↑,
Cyt‑c↑, cytochrome c release
cl‑PARP↑,
DNMTs↓,
Telomerase↓,
angioG↓,
Hif1a↓,
NF-kB↓,
MMPs↓,
BAX↑,
Bak↑,
Bcl-2↓,
Bcl-xL↓,
P53↑,
PTEN↑,
IGF-1↓,
H3↓,
HDAC1↓,
*LDH↓, reduces LDL cholesterol, decreases oxidative stress by neutralizing ROS
*ROS↓,

3236- EGCG,  BA,    Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate
- in-vitro, Colon, RKO - in-vitro, Colon, HCT116 - in-vitro, Colon, HT29
Apoptosis↑, combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells.
TumCCA?,
HDAC1↓, decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines.
DNMT1↓,
survivin↓,
HDAC↓,
P21↑, induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65.
NF-kB↑,
γH2AX↑, An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels
ac‑H3↑, induction of histone H3 hyperacetylation was also observed with combination treatment.
DNAdam↑,

3238- EGCG,    Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications
- Review, Var, NA
Telomerase↓, EGCG stimulates telomere fragmentation through inhibiting telomerase activity.
DNMTs↓, EGCG reduced DNMTs,
cycD1↓, EGCG also reduced the protein expression of cyclin D1, cyclin E, CDK2, CDK4, and CDK6. EGCG also inhibited the activity of CDK2 and CDK4, and caused Rb hypophosphorylation
cycE↓,
CDK2↓,
CDK4↓,
CDK6↓,
HATs↓, EGCG can inhibit certain biomedically important molecular targets such as DNMTs, HATs, and HDACs
HDAC↓,
selectivity↑, EGCG has shown higher cytotoxicity in cancer cells than in their normal counterparts.
uPA↓, EGCG blocks urokinase, an enzyme which is essential for cancer growth and metastasis
NF-kB↓, EGCG inhibits NFκB and expression of TNF-α, reduces cancer promotion
TNF-α↓,
*ROS↓, It acts as strong ROS scavenger and antioxidant,
*antiOx↑,
Hif1a↓, ↓ HIF-1α; ↓ VEGF; ↓ VEGFR1;
VEGF↓,
MMP2↓, ↓ MMP-2; ↓ MMP-9; ↓ FAK;
MMP9↓,
FAK↓,
TIMP2↑, TIMP-2; ↑
Mcl-1↓, ↓ Mcl-1; ↓ survivin; ↓ XIAP
survivin↓,
XIAP↓,
PCNA↓, ↓ PCNA; ↑ 16; ↑ p18; ↑ p21; ↑ p27; ↑ pRb; ↑ p53; ↑ mdm2
p16↑,
P21↑,
p27↑,
pRB↑,
P53↑,
MDM2↑,
ROS↑, ↑ ROS; ↑ caspase-3; ↑ caspase-8; ↑ caspase-9; ↑ cytochrome c; ↑ Smac/DIABLO; ↓↑ Bax; Z Bak; ↓ cleaved PPAR;
Casp3↑,
Casp8↑,
Casp9↑,
Cyt‑c↑,
Diablo↑,
BAX⇅,
cl‑PPARα↓,
PDGF↓, ↓ PDGF; ↓ PDGFRb; ↓ EGFR;
EGFR↓,
FOXO↑, activated FOXO transcription factors
AP-1↓, The inhibition of AP-1 activity by EGCG was associated with inhibition of JNK activation but not ERK activation.
JNK↓,
COX2↓, EGCG reduces the activity of COX-2 following interleukin-1A stimulation of human chondrocytes
angioG↓, EGCG inhibits angiogenesis by enhancing FOXO transcriptional activity

649- EGCG,  CUR,  PI,    Targeting Cancer Hallmarks with Epigallocatechin Gallate (EGCG): Mechanistic Basis and Therapeutic Targets
- Review, Var, NA
*BioEnh↑, increase EGCG bioavailability is using other natural products such as curcumin and piperine
EGFR↓,
HER2/EBBR2↓,
IGF-1↓,
MAPK↓,
ERK↓, reduction in ERK1/2 phosphorylation
RAS↓,
Raf↓, Raf-1
NF-kB↓, Numerous investigations have proven that EGCG has an inhibitory effect on NF-κB
p‑pRB↓, EGCG were displayed to reduce the phosphorylation of Rb, and as a result, cells were arrested in G1 phase
TumCCA↑, arrested in G1 phase
Glycolysis↓, EGCG has been found to inhibit key enzymes involved in glycolysis, such as hexokinase and pyruvate kinase, thereby disrupting the Warburg effect and inhibiting tumor cell growth
Warburg↓,
HK2↓,
Pyruv↓,

1056- EGCG,    EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression
- vitro+vivo, BC, E0771
TumW↓,
VEGF↓,
Weight∅, no effects on the body weight, heart weight, angiogenesis and VEGF expression in the heart and skeletal muscle of mice.
Hif1a↓,
NF-kB↓,

26- EGCG,  QC,  docx,    Green tea and quercetin sensitize PC-3 xenograft prostate tumors to docetaxel chemotherapy
- vitro+vivo, Pca, PC3
BAD↓,
PARP↑,
Casp7↑,
IκB↓,
Ki-67↓,
VEGF↓,
EGFR↓,
FGF↓,
TGF-β↓,
TNF-α↓,
SCF↓,
Bax:Bcl2↑,
NF-kB↓,

643- EGCG,    New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate
- Analysis, NA, NA
H2O2↑,
Fenton↑,
PDGFR-BB↑,
EGFR↓, EGCG inhibits activities of EGFR, VEGFR, and IGFR
VEGFR2↓,
IGFR↓,
Ca+2↑, EGCG elevates cytosolic Ca2+ levels
NO↑, EGCG-stimulated elevation of cytosolic calcium contributes to NO production by binding to calmodulin
Sp1/3/4↓,
NF-kB↓,
AP-1↓,
STAT1↓,
STAT3↓,
FOXO↓, FOXO1
mtDam↑,
TumAuto↑,

686- EGCG,    Prevention effect of EGCG in rat's lung cancer induced by benzopyrene
- in-vivo, Lung, NA
NF-kB↓,
p50↓,
Ki-67↓,

689- EGCG,    NF-kB_and_MMP-9">EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down regulation of NF-κB and MMP-9
- vitro+vivo, Bladder, SW780
Casp8↑,
Casp9↑,
Casp3↑,
BAX↑,
PARP↑,
TumVol↓,
NF-kB↓,
MMP9↓,

691- EGCG,    Preclinical Pharmacological Activities of Epigallocatechin-3-gallate in Signaling Pathways: An Update on Cancer
- Review, NA, NA
Apoptosis↑,
necrosis↑,
TumAuto↑,
ERK↓, ERK1/2
p38↓,
NF-kB↓,
VEGF↓,

692- EGCG,    EGCG: The antioxidant powerhouse in lung cancer management and chemotherapy enhancement
- Review, NA, NA
ROS↑,
Apoptosis↑,
DNAdam↑,
CTR1↑,
JWA↑,
β-catenin/ZEB1↓, downregulation of the Wnt/β-catenin pathway interferes with CSC traits
P53↑,
Vim↓,
VEGF↓,
p‑Akt↓,
Hif1a↓,
COX2↓,
ERK↓,
NF-kB↓,
Akt↓,
Bcl-xL↓,
miR-210↓,

20- EGCG,    Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer
- in-vivo, Liver, NA - in-vivo, Tong, NA
HH↓,
Gli1↓,
Smo↓,
TNF-α↓,
COX2↓, EGCG inhibits cyclooxygenase-2 without affecting COX-1 expression at both the mRNA and protein levels, in androgen-sensitive LNCaP and androgen-insensitive PC-3
*antiOx↑, EGCG is a well-known antioxidant and it scavenges most free radicals, such as ROS and RNS
Hif1a↓,
NF-kB↓,
VEGF↓,
STAT3↓,
Bcl-2↓,
P53↑, EGCG activates p53 in human prostate cancer cells
Akt↓,
p‑Akt↓,
p‑mTOR↓,
EGFR↓,
AP-1↓,
BAX↑,
ROS↑, apoptosis was convoyed by ROS production and caspase-3 cleavage
Casp3↑,
Apoptosis↑,
NRF2↑, pancreatic cancer cells via inducing cellular reactive oxygen species (ROS) accumulation and activating Nrf2 signaling
*H2O2↓, EGCG plays a role in the inhibition of H2O2 and NO production in human skin [10].
*NO↓, EGCG plays a role in the inhibition of H2O2 and NO production in human skin [10].
*SOD↑, fig 2
*Catalase↑, fig 2
*GPx↑, fig 2
*ROS↓, fig 2

680- EGCG,    Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea
- Review, NA, NA
NF-kB↓,
STAT3↓,
PI3K↓,
HGF/c-Met↓,
Akt↓,
ERK↓,
MAPK↓,
AR↓,
Casp↑,
Ki-67↓,
PARP↑,
Bcl-2↓,
BAX↑,
PCNA↓,
p27↑,
P21↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 19

Results for Effect on Cancer/Diseased Cells:
Akt↓,3,   p‑Akt↓,3,   angioG↓,3,   AP-1↓,4,   Apoptosis↑,6,   AR↓,1,   ATF4↑,1,   ATG5↑,1,   BAD↓,1,   BAD↑,1,   Bak↑,3,   BAX↑,5,   BAX⇅,1,   Bax:Bcl2↑,2,   BBB↑,1,   Bcl-2↓,4,   Bcl-xL↓,3,   Beclin-1↑,1,   BioAv↓,1,   BioAv∅,1,   Ca+2↑,1,   Casp↑,2,   Casp3↑,6,   Casp7↑,1,   Casp8↓,1,   Casp8↑,3,   Casp9↑,2,   CDK2↓,1,   CDK4↓,1,   CDK6↓,1,   chemoP↑,1,   ChemoSen↑,1,   CHOP↑,1,   COX2↓,4,   CTR1↑,1,   cycD1↓,1,   cycE↓,1,   Cyt‑c↑,3,   Diablo↑,1,   DNAdam↑,2,   DNMT1↓,2,   DNMTs↓,3,   eff↓,1,   eff↑,2,   EGFR↓,5,   ER Stress↑,1,   ERK↓,5,   FAK↓,1,   Fas↑,1,   Fenton↑,1,   FGF↓,1,   FOXO↓,1,   FOXO↑,1,   Gli1↓,1,   GlutMet↓,1,   Glycolysis↓,1,   GRP78/BiP↑,1,   H2O2↑,1,   H3↓,1,   ac‑H3↑,2,   ac‑H4↑,1,   Half-Life∅,1,   HATs↓,2,   HDAC↓,3,   HDAC1↓,2,   HER2/EBBR2↓,1,   HGF/c-Met↓,2,   HH↓,1,   Hif1a↓,6,   HK2↓,1,   HSP27↓,1,   IGF-1↓,2,   IGF-1R↑,1,   IGFR↓,1,   IL1β↓,1,   IL6↓,1,   IκB↓,1,   IκB↑,1,   JNK↓,1,   JWA↑,1,   Ki-67↓,3,   lactateProd↓,1,   LC3B↑,1,   LC3II↑,1,   MAPK↓,3,   Mcl-1↓,1,   MDM2↑,1,   miR-210↓,1,   MMP↑,1,   MMP2↓,2,   MMP9↓,3,   MMP9↑,1,   MMPs↓,4,   mtDam↑,1,   p‑mTOR↓,1,   Myc↓,1,   necrosis↑,1,   NF-kB↓,16,   NF-kB↑,1,   NO↑,1,   NOS2↓,1,   NOTCH3↓,1,   NRF2↑,1,   P-gp↓,1,   p16↑,1,   P21↑,3,   p27↑,2,   p38↓,1,   p50↓,1,   P53↑,5,   PARP↑,5,   cl‑PARP↑,1,   PCNA↓,2,   PDGF↓,1,   PDGFR-BB↑,1,   PI3K↓,1,   PI3K/Akt↓,1,   cl‑PPARα↓,1,   pRB↑,1,   p‑pRB↓,1,   PTEN↑,2,   Pyruv↓,1,   Raf↓,1,   RAS↓,1,   RECK↑,1,   ROS↑,4,   SCF↓,1,   selectivity↑,2,   Smo↓,1,   Sp1/3/4↓,2,   Sp1/3/4↑,1,   STAT1↓,1,   STAT3↓,4,   survivin↓,2,   Telomerase↓,3,   TGF-β↓,1,   TIMP1↑,1,   TIMP2↑,1,   TNF-α↓,4,   toxicity∅,1,   TP53↓,1,   TumAuto↑,2,   TumCCA?,1,   TumCCA↑,1,   TumCI↓,1,   TumCP↓,1,   TumMeta↓,1,   TumVol↓,1,   TumW↓,1,   uPA↓,2,   UPR↑,1,   VEGF↓,7,   VEGFR2↓,1,   Vim↓,1,   Warburg↓,1,   Weight∅,1,   Wnt↑,1,   XIAP↓,1,   Zeb1↑,1,   β-catenin/ZEB1↓,2,   γH2AX↑,1,  
Total Targets: 161

Results for Effect on Normal Cells:
AntiCan↑,1,   antiOx?,1,   antiOx↑,2,   AP-1↓,1,   BAX↓,1,   BBB↑,1,   BioAv↓,2,   BioAv↑,1,   BioAv↝,1,   BioEnh↑,1,   Ca+2?,1,   cardioP↑,2,   Catalase↑,1,   COX2↓,1,   Cyt‑c↓,1,   Dose↝,1,   Dose∅,1,   E2Fs↑,1,   glucose↓,1,   GPx↑,1,   H2O2↓,1,   Half-Life↝,1,   hepatoP↓,1,   IGF-1R↓,1,   IL6↓,1,   IL8↓,1,   Inflam↓,2,   iNOS↓,1,   JAK↓,1,   LDH↓,1,   LDL↓,1,   memory↑,1,   MMP2↓,1,   MPO↓,1,   neuroP↑,2,   NF-kB↓,2,   NO↓,1,   NRF2↑,1,   other↓,1,   P53↓,1,   PDGFR-BB↓,1,   RNS↓,1,   ROS↓,5,   SOD↑,1,   SOD1↑,1,   SOD2↑,1,   TNF-α↓,1,  
Total Targets: 47

Scientific Paper Hit Count for: NF-kB, Nuclear factor kappa B
19 EGCG (Epigallocatechin Gallate)
2 Curcumin
1 Arctigenin
1 Butyrate
1 Piperine
1 Quercetin
1 Docetaxel
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:73  Target#:214  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page