condition found tbRes List
EGCG, EGCG (Epigallocatechin Gallate): Click to Expand ⟱
Features:
EGCG (Epigallocatechin Gallate) is found in green tea. 100 times more effective than Vitamin C and 25 times more effective than Vitamin E at protecting cells from damage associated with oxidative stress.
EGCG Epigallocatechin Gallate (Green Tea) -Catechin
Summary:
1. Concentration is a factor that could determine whether green tea polyphenols act as antioxidants or pro-oxidants.
2. Poor bioavailability: taking EGCG capsules without food was better.
3. Cancer dosage 4g/day (2g twice per day)? with curcumin may help (another ref says 700–2100 mg/d)
4. EGCG is susceptible to oxidative degradation.
5. “As for the pH level, the acidic environments enhance the stability of EGCG”.
6. “EGCG may enhance nanoparticle uptake by tumor cells”
7. Might be iron chelator (removing iron from cancer cells)
8. Claimed as synergistic effect with chemotherapy ( cisplatin, bleomycin, gemcitabine.
9. May suppress glucose metabolism, interfere with VEGF, downregulate NF-κB and MMP-9, down-regulation of androgen-regulated miRNA-21.
10. Take with red pepper powder, Capsicum ratio 25:1 (based on half life, they did every 4 hr) (chili pepper vanilloid capsaicin).
11. EGCG mediated ROS formation can upregulate CTR1 expression via the ERK1/2/NEAT1 pathway, which can increase the intake of chemotherapeutic drugs such as cisplatin in NSCLC cells and act as a chemosensitizer [58]
12. Matcha green tea has highest EGCG (2-3X) because consuming leaf.
13. EGCG is an ENOX2 inhibitor.
14. Nrf2 activator in both cancer and normal cells. This example of lung cancer show both directions in different cell lines, but both toward optimim level.
Biological activity, EGCG has been reported to exhibit a range of effects, including:
    Antioxidant activity: 10-50 μM
     Anti-inflammatory activity: 20-50 μM
     Anticancer activity: 50-100 μM
     Cardiovascular health: 20-50 μM
     Neuroprotective activity: 10-50 μM

Drinking a cup (or two cups) of green tea (in which one might ingest roughly 50–100 mg of EGCG from brewed tea) generally results in peak plasma EGCG concentrations in the range of approximately 0.1 to 0.6 μM.

With higher, supplement-type doses (e.g., oral doses in the 500 mg–800 mg range that are sometimes studied for clinical benefits), peak plasma concentrations in humans can reach the low micromolar range, often reported around ~1–2 μM and in some cases up to 5 μM.

Reported values can range from about 25–50 mg of EGCG per gram of matcha powder.
In cases where the matcha is exceptionally catechin-rich, the content could reach 200–250 mg or more in 5 g.

-Peak plasma concentration roughly 1 to 2 hours after oral ingestion.
-Elimination half-life of EGCG in plasma is commonly reported to be in the range of about 3 to 5 hours.

Supplemental EGCG
Dose (mg)   ≈ Peak Plasma EGCG (µM)
~50 mg          ≈ 0.1–0.3 µM
~100 mg         ≈ 0.2–0.6 µM
~250 mg         ≈ 0.5–1.0 µM
~500 mg         ≈ 1–2 µM
~800 mg or higher  ≈ 1–5 µM

50mg of EGCG in 1g of matcha tea(1/2 teaspoon)

Studies on green tea extracts have employed doses roughly equivalent to 300–800 mg/day of EGCG. Excessive doses can cause liver toxicity in some cases.

Methods to improve bioavailability
-Lipid-based carriers or nanoemulsions
-Polymer-based nanoparticles or encapsulation
-Co-administration with ascorbic acid (vitamin C)
-Co-administration of adjuvants like piperine (perhaps sunflower lecithin and chitosan) -Using multiple smaller doses rather than one large single dose.
-Taking EGCG on an empty stomach or under fasting conditions, or aligning dosing with optimal pH conditions in the GI tract, may improve its absorption.(acidic environment is generally more favorable for its stability and absorption).
– EGCG is more stable under acidic conditions. In the stomach, where the pH is typically around 1.5 to 3.5, EGCG is less prone to degradation compared to the more neutral or basic environments of the small intestine.
- At neutral (around pH 7) or alkaline pH, EGCG undergoes auto-oxidation, reducing the effective concentration available for absorption.
– Although the stomach’s acidic pH helps maintain EGCG’s stability, most absorption occurs in the small intestine, where the pH is closer to neutral.
– To counterbalance the inherent instability in the intestine, strategies such as co-administration of pH-modifying agents (like vitamin C) are sometimes used. These agents help to maintain a slightly acidic environment in the gut microenvironment, potentially improving EGCG stability during its transit and absorption.
– The use of acidifiers or buffering agents in supplements may help preserve EGCG until it reaches the absorption sites.

-Note half-life 3–5 hours.
- low BioAv 1%? despite its limited absorption, it is rapidly disseminated throughout the body
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Does NOT Lower AntiOxidant defense in Cancer Cells: NRF2↑, TrxR↓**, SOD, GSH Catalase HO1 GPx
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, Notch↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective(possible damage at high dose), CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Hif1a, HIF1α/HIF1a: Click to Expand ⟱
Source:
Type:
Hypoxia-Inducible-Factor 1A (HIF1A gene, HIF1α, HIF-1α protein product)
-Dominantly expressed under hypoxia(low oxygen levels) in solid tumor cells
-HIF1A induces the expression of vascular endothelial growth factor (VEGF)
-High HIF-1α expression is associated with Poor prognosis
-Low HIF-1α expression is associated with Better prognosis

-Functionally, HIF-1α is reported to regulate glycolysis, whilst HIF-2α regulates genes associated with lipoprotein metabolism.
-Cancer cells produce HIF in response to hypoxia in order to generate more VEGF that promote angiogenesis

Key mediators of aerobic glycolysis regulated by HIF-1α.
-GLUT-1 → regulation of the flux of glucose into cells.
-HK2 → catalysis of the first step of glucose metabolism.
-PKM2 → regulation of rate-limiting step of glycolysis.
-Phosphorylation of PDH complex by PDK → blockage of OXPHOS and promotion of aerobic glycolysis.
-LDH (LDHA): Rapid ATP production, conversion of pyruvate to lactate;

HIF-1α Inhibitors:
-Curcumin: disruption of signaling pathways that stabilize HIF-1α (ie downregulate).
-Resveratrol: downregulate HIF-1α protein accumulation under hypoxic conditions.
-EGCG: modulation of upstream signaling pathways, leading to decreased HIF-1α activity.
-Emodin: reduce HIF-1α expression. (under hypoxia).
-Apigenin: inhibit HIF-1α accumulation.


Scientific Papers found: Click to Expand⟱
3201- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*AntiCan↑, EGCG’s therapeutic potential in preventing and managing a range of chronic conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes
*cardioP↑,
*neuroP↑,
*BioAv↝, Factors such as fasting, storage conditions, albumin levels, vitamin C, fish oil, and piperine have been shown to affect plasma concentrations and the overall bioavailability of EGCG
*BioAv↓, Conversely, bioavailability is reduced by processes such as air oxidation, sulfation, glucuronidation, gastrointestinal degradation, and interactions with Ca2+, Mg2+, and trace metals,
*BioAv↓, EGCG’s oral bioavailability is generally low, with marked differences observed across species, for example, bioavailability rates of 26.5% in CF-1 mice and just 1.6% in Sprague Dawley rats
*Dose↝, plasma concentrations exceeded 1 μM only when doses of 1 g or higher were administered.
*Half-Life↝, Specifically, a dose of 1600 mg yielded a Cmax of 3392 ng/mL (range: 130–3392 ng/mL), with peak levels observed between 1.3 and 2.2 h, AUC (0–∞) values ranging from 442 to 10,368 ng·h/mL, and a half-life (t1/2z) of 1.9 to 4.6 h.
*BioAv↑, Studies on the distribution of EGCG have revealed that, despite its limited absorption, it is rapidly disseminated throughout the body or quickly converted into metabolites
*BBB↑, Additionally, EGCG can cross the blood–brain barrier, allowing it to reach the brain
*hepatoP↓, Several studies have documented liver damage linked to green tea consumption [48,49,50,51,52,53].
*other↓, EGCG has also been shown to inhibit the intestinal absorption of non-heme iron in a dose-dependent manner in a controlled clinical trial
*Inflam↓, EGCG has been widely recognized for its anti-inflammatory effects
*NF-kB↓, EGCG has been shown to suppress NF-κB activation, inhibit its nuclear translocation, and block AP-1 activity
*AP-1↓,
*iNOS↓, downregulation of pro-inflammatory enzymes like iNOS and COX-2 and scavenging of ROS/RNS, including nitric oxide and peroxynitrite
*COX2↓,
*ROS↓,
*RNS↓,
*IL8↓, EGCG has been shown to suppress airway inflammation by reducing IL-8 release, a cytokine involved in neutrophil aggregation and ROS production.
*JAK↓, EGCG blocks the JAK1/2 signaling pathway
*PDGFR-BB↓, downregulate PDGFR and IGF-1R gene expression
*IGF-1R↓,
*MMP2↓, reduce MMP-2 mRNA expression
*P53↓, downregulation of the p53-p21 signaling pathway and the enhanced expression of Nrf2
*NRF2↑,
*TNF-α↓, 25 to 100 μM reduced the levels of TNF-α, IL-6, and ROS while enhancing the expression of E2F2 and superoxide dismutases (SOD1 and SOD2), enzymes vital for cellular antioxidant defense.
*IL6↓,
*E2Fs↑,
*SOD1↑,
*SOD2↑,
Casp3↑, EGCG has been shown to activate key apoptotic pathways, such as caspase-3 activation, cytochrome c release, and PARP cleavage, in various cell models, including PC12 cells exposed to oxidative stress
Cyt‑c↑,
PARP↑,
DNMTs↓, (1) the inhibition of DNA hypermethylation by blocking DNA methyltransferase (DNMT)
Telomerase↓, (2) the repression of telomerase activity;
Hif1a↓, (3) the suppression of angiogenesis via the inhibition of HIF-1α and NF-κB;
MMPs↓, (4) the prevention of cellular metastasis by inhibiting matrix metalloproteinases (MMPs);
BAX↑, (5) the promotion of apoptosis through the activation of pro-apoptotic proteins like BAX and BAK
Bak↑,
Bcl-2↓, while downregulating anti-apoptotic proteins like BCL-2 and BCL-XL;
Bcl-xL↓,
P53↑, (6) the upregulation of tumor suppressor genes such as p53 and PTEN;
PTEN↑,
TumCP↓, (7) the inhibition of inflammation and proliferation via NF-κB suppression;
MAPK↓, (8) anti-proliferative activity through the modulation of MAPK and IGF1R pathways
HGF/c-Met↓, EGCG inhibits hepatocyte growth factor (HGF), which is involved in tumor migration and invasion
TIMP1↑, EGCG has also been shown to influence the expression of tissue inhibitors of metalloproteinases (TIMPs) and MMPs, which are involved in tumorigenesis
HDAC↓, nhibition of UVB-induced DNA hypomethylation and modulation of DNMT and histone deacetylase (HDAC) activities
MMP9↓, inhibiting MMPs such as MMP-2 and MMP-9
uPA↓, EGCG may block urokinase-like plasminogen activator (uPA), a protease involved in cancer progression
GlutMet↓, EGCG can exert antitumor effects by inhibiting glycolytic enzymes, reducing glucose metabolism, and further suppressing cancer-cell growth
ChemoSen↑, EGCG’s combination with standard chemotherapy drugs may enhance their efficacy through additive or synergistic effects, while also mitigating chemotherapy-related side effects
chemoP↑,

1516- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*Dose∅, A pharmacokinetic study in healthy individuals receiving single doses of EGCGrevealed that plasma concentrations exceeded 1 μM only with doses of >1 g
Half-Life∅, peak levels observed between 1.3 and 2.2 h (and a half-life (t1/2z) of 1.9 to 4.6 h)
BioAv∅, oral bioavailability of 20.3% relative to intravenous admistration
BBB↑, EGCG can cross the blood–brain barrier, allowing it to reach the brain
toxicity∅, Isbrucher et al. found no evidence of genotoxicity in rats following oral administration of EGCG at doses of 500, 1000, or 2000 mg/kg, or intravenous injections of 10, 25, or 50 mg/kg/day.
eff↓, interaction with the folate transporter has been reported, leading to reduced bioavailability of folic acid
Apoptosis↑,
Casp3↑,
Cyt‑c↑, cytochrome c release
cl‑PARP↑,
DNMTs↓,
Telomerase↓,
angioG↓,
Hif1a↓,
NF-kB↓,
MMPs↓,
BAX↑,
Bak↑,
Bcl-2↓,
Bcl-xL↓,
P53↑,
PTEN↑,
IGF-1↓,
H3↓,
HDAC1↓,
*LDH↓, reduces LDL cholesterol, decreases oxidative stress by neutralizing ROS
*ROS↓,

2302- EGCG,    Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
- Review, Var, NA
TumCP↓, EGCG suppressed proliferation and dose-dependently inhibited the expression of HIF-1α
Hif1a↓, EGCG significantly suppressed HIF-1α protein accumulation in these cells but did not affect HIF-1α mRNA expression.
LDHA↓, Moreover, EGCG attenuated LDHA release in Sarcoma 180 tumor-bearing mice
PFK↓, Moreover, EGCG inhibited the expression and activity of PFK in hepatocellular carcinoma (HCC-LM3 and HepG2) cells
cardioP↑, EGCG-exerted heart benefits related to reduced LDH release
Glycolysis↓, EGCG inhibits glycolysis (especially PFK activity) in aerobic glycolytic HCC cell lines
PKM2↓, EGCG inhibits glycolysis through repressing rate-limiting enzymes (PFK and PKM2)

3238- EGCG,    Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications
- Review, Var, NA
Telomerase↓, EGCG stimulates telomere fragmentation through inhibiting telomerase activity.
DNMTs↓, EGCG reduced DNMTs,
cycD1↓, EGCG also reduced the protein expression of cyclin D1, cyclin E, CDK2, CDK4, and CDK6. EGCG also inhibited the activity of CDK2 and CDK4, and caused Rb hypophosphorylation
cycE↓,
CDK2↓,
CDK4↓,
CDK6↓,
HATs↓, EGCG can inhibit certain biomedically important molecular targets such as DNMTs, HATs, and HDACs
HDAC↓,
selectivity↑, EGCG has shown higher cytotoxicity in cancer cells than in their normal counterparts.
uPA↓, EGCG blocks urokinase, an enzyme which is essential for cancer growth and metastasis
NF-kB↓, EGCG inhibits NFκB and expression of TNF-α, reduces cancer promotion
TNF-α↓,
*ROS↓, It acts as strong ROS scavenger and antioxidant,
*antiOx↑,
Hif1a↓, ↓ HIF-1α; ↓ VEGF; ↓ VEGFR1;
VEGF↓,
MMP2↓, ↓ MMP-2; ↓ MMP-9; ↓ FAK;
MMP9↓,
FAK↓,
TIMP2↑, TIMP-2; ↑
Mcl-1↓, ↓ Mcl-1; ↓ survivin; ↓ XIAP
survivin↓,
XIAP↓,
PCNA↓, ↓ PCNA; ↑ 16; ↑ p18; ↑ p21; ↑ p27; ↑ pRb; ↑ p53; ↑ mdm2
p16↑,
P21↑,
p27↑,
pRB↑,
P53↑,
MDM2↑,
ROS↑, ↑ ROS; ↑ caspase-3; ↑ caspase-8; ↑ caspase-9; ↑ cytochrome c; ↑ Smac/DIABLO; ↓↑ Bax; Z Bak; ↓ cleaved PPAR;
Casp3↑,
Casp8↑,
Casp9↑,
Cyt‑c↑,
Diablo↑,
BAX⇅,
cl‑PPARα↓,
PDGF↓, ↓ PDGF; ↓ PDGFRb; ↓ EGFR;
EGFR↓,
FOXO↑, activated FOXO transcription factors
AP-1↓, The inhibition of AP-1 activity by EGCG was associated with inhibition of JNK activation but not ERK activation.
JNK↓,
COX2↓, EGCG reduces the activity of COX-2 following interleukin-1A stimulation of human chondrocytes
angioG↓, EGCG inhibits angiogenesis by enhancing FOXO transcriptional activity

1056- EGCG,    EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression
- vitro+vivo, BC, E0771
TumW↓,
VEGF↓,
Weight∅, no effects on the body weight, heart weight, angiogenesis and VEGF expression in the heart and skeletal muscle of mice.
Hif1a↓,
NF-kB↓,

692- EGCG,    EGCG: The antioxidant powerhouse in lung cancer management and chemotherapy enhancement
- Review, NA, NA
ROS↑,
Apoptosis↑,
DNAdam↑,
CTR1↑,
JWA↑,
β-catenin/ZEB1↓, downregulation of the Wnt/β-catenin pathway interferes with CSC traits
P53↑,
Vim↓,
VEGF↓,
p‑Akt↓,
Hif1a↓,
COX2↓,
ERK↓,
NF-kB↓,
Akt↓,
Bcl-xL↓,
miR-210↓,

20- EGCG,    Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer
- in-vivo, Liver, NA - in-vivo, Tong, NA
HH↓,
Gli1↓,
Smo↓,
TNF-α↓,
COX2↓, EGCG inhibits cyclooxygenase-2 without affecting COX-1 expression at both the mRNA and protein levels, in androgen-sensitive LNCaP and androgen-insensitive PC-3
*antiOx↑, EGCG is a well-known antioxidant and it scavenges most free radicals, such as ROS and RNS
Hif1a↓,
NF-kB↓,
VEGF↓,
STAT3↓,
Bcl-2↓,
P53↑, EGCG activates p53 in human prostate cancer cells
Akt↓,
p‑Akt↓,
p‑mTOR↓,
EGFR↓,
AP-1↓,
BAX↑,
ROS↑, apoptosis was convoyed by ROS production and caspase-3 cleavage
Casp3↑,
Apoptosis↑,
NRF2↑, pancreatic cancer cells via inducing cellular reactive oxygen species (ROS) accumulation and activating Nrf2 signaling
*H2O2↓, EGCG plays a role in the inhibition of H2O2 and NO production in human skin [10].
*NO↓, EGCG plays a role in the inhibition of H2O2 and NO production in human skin [10].
*SOD↑, fig 2
*Catalase↑, fig 2
*GPx↑, fig 2
*ROS↓, fig 2

668- EGCG,    The Potential Role of Epigallocatechin-3-Gallate (EGCG) in Breast Cancer Treatment
- Review, BC, MCF-7 - Review, BC, MDA-MB-231
HER2/EBBR2↓,
EGFR↓,
mtDam↑,
ROS↑,
PI3K/Akt↓,
P53↑,
P21↑,
Casp3↑,
Casp9↑,
BAX↑,
PTEN↑,
Bcl-2↓,
hTERT↓,
STAT3↓,
TumCCA↑, EGCG causes cell cycle arrest by preventing cyclin accumulation D1
Hif1a↓,

670- EGCG,    Epigallocatechin-3-gallate and its nanoformulation in cervical cancer therapy: the role of genes, MicroRNA and DNA methylation patterns
- Review, NA, NA
TumCCA↑, EGCG promoted G1 phase arrest
P53↑,
ERK↓, EGCG inactivated ERK1/2 protein kinases
EGFR↓,
p‑ERK↑,
VEGF↓,
Hif1a↓,
miR-203↓, in CA33 cells only
miR-210↑,

681- EGCG,    Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models
- vitro+vivo, BC, NA
Casp3↑,
Casp8↑,
Casp9↑,
TumAuto↑,
Beclin-1↝,
ATG5↝,
GlucoseCon↓,
lactateProd↓,
ATP↝,
HK2↓, significantly inhibited the activities and mRNA levels of the glycolytic enzymes hexokinase (HK)
LDHA↓,
Hif1a↓,
GLUT1↓,
TumVol↓,
VEGF↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 10

Results for Effect on Cancer/Diseased Cells:
Akt↓,2,   p‑Akt↓,2,   angioG↓,2,   AP-1↓,2,   Apoptosis↑,3,   ATG5↝,1,   ATP↝,1,   Bak↑,2,   BAX↑,4,   BAX⇅,1,   BBB↑,1,   Bcl-2↓,4,   Bcl-xL↓,3,   Beclin-1↝,1,   BioAv∅,1,   cardioP↑,1,   Casp3↑,6,   Casp8↑,2,   Casp9↑,3,   CDK2↓,1,   CDK4↓,1,   CDK6↓,1,   chemoP↑,1,   ChemoSen↑,1,   COX2↓,3,   CTR1↑,1,   cycD1↓,1,   cycE↓,1,   Cyt‑c↑,3,   Diablo↑,1,   DNAdam↑,1,   DNMTs↓,3,   eff↓,1,   EGFR↓,4,   ERK↓,2,   p‑ERK↑,1,   FAK↓,1,   FOXO↑,1,   Gli1↓,1,   GlucoseCon↓,1,   GLUT1↓,1,   GlutMet↓,1,   Glycolysis↓,1,   H3↓,1,   Half-Life∅,1,   HATs↓,1,   HDAC↓,2,   HDAC1↓,1,   HER2/EBBR2↓,1,   HGF/c-Met↓,1,   HH↓,1,   Hif1a↓,10,   HK2↓,1,   hTERT↓,1,   IGF-1↓,1,   JNK↓,1,   JWA↑,1,   lactateProd↓,1,   LDHA↓,2,   MAPK↓,1,   Mcl-1↓,1,   MDM2↑,1,   miR-203↓,1,   miR-210↓,1,   miR-210↑,1,   MMP2↓,1,   MMP9↓,2,   MMPs↓,2,   mtDam↑,1,   p‑mTOR↓,1,   NF-kB↓,5,   NRF2↑,1,   p16↑,1,   P21↑,2,   p27↑,1,   P53↑,7,   PARP↑,1,   cl‑PARP↑,1,   PCNA↓,1,   PDGF↓,1,   PFK↓,1,   PI3K/Akt↓,1,   PKM2↓,1,   cl‑PPARα↓,1,   pRB↑,1,   PTEN↑,3,   ROS↑,4,   selectivity↑,1,   Smo↓,1,   STAT3↓,2,   survivin↓,1,   Telomerase↓,3,   TIMP1↑,1,   TIMP2↑,1,   TNF-α↓,2,   toxicity∅,1,   TumAuto↑,1,   TumCCA↑,2,   TumCP↓,2,   TumVol↓,1,   TumW↓,1,   uPA↓,2,   VEGF↓,6,   Vim↓,1,   Weight∅,1,   XIAP↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 107

Results for Effect on Normal Cells:
AntiCan↑,1,   antiOx↑,2,   AP-1↓,1,   BBB↑,1,   BioAv↓,2,   BioAv↑,1,   BioAv↝,1,   cardioP↑,1,   Catalase↑,1,   COX2↓,1,   Dose↝,1,   Dose∅,1,   E2Fs↑,1,   GPx↑,1,   H2O2↓,1,   Half-Life↝,1,   hepatoP↓,1,   IGF-1R↓,1,   IL6↓,1,   IL8↓,1,   Inflam↓,1,   iNOS↓,1,   JAK↓,1,   LDH↓,1,   MMP2↓,1,   neuroP↑,1,   NF-kB↓,1,   NO↓,1,   NRF2↑,1,   other↓,1,   P53↓,1,   PDGFR-BB↓,1,   RNS↓,1,   ROS↓,4,   SOD↑,1,   SOD1↑,1,   SOD2↑,1,   TNF-α↓,1,  
Total Targets: 38

Scientific Paper Hit Count for: Hif1a, HIF1α/HIF1a
10 EGCG (Epigallocatechin Gallate)
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:73  Target#:143  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page