condition found tbRes List
BetA, Betulinic acid: Click to Expand ⟱
Features:
Betulinic acid "buh-TOO-li-nik acid" is a natural compound with antiretroviral, anti malarial, anti-inflammatory and anticancer properties. It is found in the bark of several plants, such as white birch, ber tree and rosemary, and has a complex mode of action against tumor cells.
-Betulinic acid is a naturally occurring pentacyclic triterpenoid
-vitro concentrations range from 1–100 µM, in vivo studies in rodents have generally used doses from 10–100 mg/kg
-half-life reports vary 3-5 hrs?.
BioAv -hydrophobic molecule with relatively poor water solubility.

Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, GLi1↓, β-catenin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells


neuroP, neuroprotective: Click to Expand ⟱
Source:
Type:
Neuroprotective refers to the ability of a substance, intervention, or strategy to preserve the structure and function of nerve cells (neurons) against injury or degeneration.
-While cancer and neurodegenerative processes might seem distinct, there is significant overlap in terms of treatment-related neurotoxicity, shared molecular mechanisms, and the potential for therapies that provide neuroprotection during cancer treatment.


Scientific Papers found: Click to Expand⟱
2724- BetA,    Down-regulation of NOX4 by betulinic acid protects against cerebral ischemia-reperfusion in mice
- in-vivo, Nor, NA - in-vivo, Stroke, NA
AntiTum↑, Betulinic acid is mainly known for its anti-tumor and anti-inflammatory activities.
*Inflam↓,
*ROS↓, Our previous study showed that betulinic acid could decrease the reactive oxygen species (ROS) production by regulating the expression of NADPH oxidase.
*NOX4↓, Pre-treatment with betulinic acid (50 mg/kg/day for 7 days via gavage) prior to MCA occlusion prevented the ischemia/reperfusion-induced up-regulation of NOX4 and ROS production.
*Apoptosis↓, treatment with betulinic acid could markedly blunt the ischemia/reperfusion-induced neuronal apoptosis
neuroP↑, betulinic acid protects against cerebral ischemia/reperfusion injury in mice

2731- BetA,    Betulinic Acid for Glioblastoma Treatment: Reality, Challenges and Perspectives
- Review, GBM, NA - Review, Park, NA - Review, AD, NA
BBB↑, Notably, its ability to cross the blood–brain barrier addresses a significant challenge in treating neurological pathologies.
*GSH↑, BA can also dramatically reduce catalepsy and stride length, while increasing the brain’s dopamine content, glutathione activity, and catalase activity in hemiparkinsonian rats
*Catalase↑,
*motorD↑,
*neuroP↑, in Alzheimer’s disease rat models, it can improve neurobehavioral impairments . BA has exhibited great neuroprotective properties.
*cognitive↑, BA improves cognitive ability and neurotransmitter levels, and protects from brain damage by lowering reactive oxygen species (ROS) levels
*ROS↓,
*antiOx↑, enhancing brain tissue’s antioxidant capacity, and preventing the release of inflammatory cytokines
*Inflam↓,
MMP↓, BA can decrease the mitochondrial outer membrane potential (MOMP)
STAT3↓, The compound can inhibit the signal transducer and activator of transcription (STAT) 3 signaling pathways, involved in differentiation, proliferation, apoptosis, metastasis formation, angiogenesis, and metabolism, and the NF-kB signaling pathway,
NF-kB↓,
Sp1/3/4↓, BA has shown an ability to control cancer growth through the modulation of Sp transcription factors, inhibit DNA topoisomerase
TOP1↓,
EMT↓, inhibit the epithelial-to-mesenchymal transition (EMT)
Hif1a↓, BA has also been associated with an antiangiogenic response under hypoxia conditions, through the STAT3/hypoxia-inducible factor (HIF)-1α/vascular endothelial growth factor (VEGF) signaling pathway
VEGF↓,
ChemoSen↑, BA has shown great potential as an adjuvant to therapy since its use combined with standard treatment of chemotherapy and irradiation can enhance their cytotoxic effect on cancer cells
RadioS↑,
BioAv↓, Despite having great potential as a therapeutic agent, it is hard for BA to fulfill the requirements for adequate water solubility, maintaining both significant cytotoxicity and selectivity for tumor cells.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
AntiTum↑,1,   BBB↑,1,   BioAv↓,1,   ChemoSen↑,1,   EMT↓,1,   Hif1a↓,1,   MMP↓,1,   neuroP↑,1,   NF-kB↓,1,   RadioS↑,1,   Sp1/3/4↓,1,   STAT3↓,1,   TOP1↓,1,   VEGF↓,1,  
Total Targets: 14

Results for Effect on Normal Cells:
antiOx↑,1,   Apoptosis↓,1,   Catalase↑,1,   cognitive↑,1,   GSH↑,1,   Inflam↓,2,   motorD↑,1,   neuroP↑,1,   NOX4↓,1,   ROS↓,2,  
Total Targets: 10

Scientific Paper Hit Count for: neuroP, neuroprotective
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:42  Target#:1105  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page