condition found tbRes List
BetA, Betulinic acid: Click to Expand ⟱
Features:
Betulinic acid "buh-TOO-li-nik acid" is a natural compound with antiretroviral, anti malarial, anti-inflammatory and anticancer properties. It is found in the bark of several plants, such as white birch, ber tree and rosemary, and has a complex mode of action against tumor cells.
-Betulinic acid is a naturally occurring pentacyclic triterpenoid
-vitro concentrations range from 1–100 µM, in vivo studies in rodents have generally used doses from 10–100 mg/kg
-half-life reports vary 3-5 hrs?.
BioAv -hydrophobic molecule with relatively poor water solubility.

Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, GLi1↓, β-catenin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells


Glycolysis, Glycolysis: Click to Expand ⟱
Source:
Type:
Glycolysis is a metabolic pathway that converts glucose into pyruvate, producing a small amount of ATP (energy) in the process. It is a fundamental process for cellular energy production and occurs in the cytoplasm of cells. In normal cells, glycolysis is tightly regulated and is followed by aerobic respiration in the presence of oxygen, which allows for the efficient production of ATP.
In cancer cells, however, glycolysis is often upregulated, even in the presence of oxygen. This phenomenon is known as the Warburg Mutations in oncogenes (like MYC) and tumor suppressor genes (like TP53) can alter metabolic pathways, promoting glycolysis and other anabolic processes that support cell growth.effect.
Acidosis: The increased production of lactate from glycolysis can lead to an acidic microenvironment, which may promote tumor invasion and suppress immune responses.

Glycolysis is a hallmark of malignancy transformation in solid tumor, and LDH is the key enzyme involved in glycolysis.

Pathways:
-GLUTs, HK2, PFK, PK, PKM2, LDH, LDHA, PI3K/AKT/mTOR, AMPK, HIF-1a, c-MYC, p53, SIRT6, HSP90α, GAPDH, HBT, PPP, Lactate Metabolism, ALDO

Natural products targeting glycolytic signaling pathways https://pmc.ncbi.nlm.nih.gov/articles/PMC9631946/
Alkaloids:
-Berberine, Worenine, Sinomenine, NK007, Tetrandrine, N-methylhermeanthidine chloride, Dauricine, Oxymatrine, Matrine, Cryptolepine

Flavonoids: -Oroxyline A, Apigenin, Kaempferol, Quercetin, Wogonin, Baicalein, Chrysin, Genistein, Cardamonin, Phloretin, Morusin, Bavachinin, 4-O-methylalpinumisofavone, Glabridin, Icaritin, LicA, Naringin, IVT, Proanthocyanidin B2, Scutellarin, Hesperidin, Silibinin, Catechin, EGCG, EGC, Xanthohumol.

Non-flavonoid phenolic compounds:
Curcumin, Resveratrol, Gossypol, Tannic acid.

Terpenoids:
-Cantharidin, Dihydroartemisinin, Oleanolic acid, Jolkinolide B, Cynaropicrin, Ursolic Acid, Triptolie, Oridonin, Micheliolide, Betulinic Acid, Beta-escin, Limonin, Bruceine D, Prosapogenin A (PSA), Oleuropein, Dioscin.

Quinones:
-Thymoquinone, Lapachoi, Tan IIA, Emodine, Rhein, Shikonin, Hypericin

Others:
-Perillyl alcohol, HCA, Melatonin, Sulforaphane, Vitamin D3, Mycoepoxydiene, Methyl jasmonate, CK, Phsyciosporin, Gliotoxin, Graviola, Ginsenoside, Beta-Carotene.


Scientific Papers found: Click to Expand⟱
2740- BetA,    Effects and mechanisms of fatty acid metabolism-mediated glycolysis regulated by betulinic acid-loaded nanoliposomes in colorectal cancer
- in-vitro, CRC, HCT116
TumCP↓, BA-NLs significantly suppressed the proliferation and glucose uptake of CRC cells by regulating potential glycolysis and fatty acid metabolism targets and pathways, which forms the basis of the anti-CRC function of BA-NLs.
Glycolysis↓,
HK2↓, HK2, PFK-1, PEP and PK isoenzyme M2 (PKM2) in glycolysis, and of ACSL1, CPT1a and PEP in fatty acid metabolism, were blocked by BA-NLs, which play key roles in the inhibition of glycolysis and fatty acid-mediated production of pyruvate and lactate.
PFK1↓,
PKM2↓,
ACSL1↓,
CPT1A↓,
FASN↓,
FAO↓, Significant reduction of FAO was detected in BA-NL-treated HCT116 cells
GlucoseCon↓, glucose uptake in HCT116 cells was significantly decreased by BA-NLs
lactateProd↓, lactic acid secretion was significantly suppressed in HCT116 cells treated with BA-NLs

943- BetA,    Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
Glycolysis↓,
lactateProd↓,
GlucoseCon↓,
ECAR↓,
cMyc↓,
LDHA↓,
p‑PDK1↓,
PDK1↓,
Cav1↑, Cav-1) as one of key targets of BA in suppressing aerobic glycolysis, as BA administration resulted in Cav-1 upregulation
*Glycolysis↑, BA could lead to increased glycolysis in mouse embryonic fibroblasts by activating LKB1/AMPK pathway, whereas we found that BA inhibited aerobic glycolysis in breast cancer cells by modulating Cav-1/NF-κB/c-Myc signaling
selectivity↑,
OCR↓, OCR parameters including the basal respiration, maximal respiration and spare respiratory capacity were also simultaneously inhibited
OXPHOS↓, implying that the activity of mitochondrial oxidative phosphorylation (OXPHOS) chain was also suppressed by BA

2729- BetA,    Betulinic acid in the treatment of tumour diseases: Application and research progress
- Review, Var, NA
ChemoSen↑, Betulinic acid can increase the sensitivity of cancer cells to other chemotherapy drugs
mt-ROS↑, BA has antitumour activity, and its mechanisms of action mainly include the induction of mitochondrial oxidative stress
STAT3↓, inhibition of signal transducer and activator of transcription 3 and nuclear factor-κB signalling pathways.
NF-kB↓,
selectivity↑, A main advantage of BA and its derivatives is that they are cytotoxic to different human tumour cells, while cytotoxicity is much lower in normal cells.
*toxicity↓, It can kill cancer cells but has no obvious effect on normal cells and is also nontoxic to other organs in xenograft mice at a dose of 500 mg/kg
eff↑, BA combined with chemotherapy drugs, such as platinum and mithramycin A, can induce apoptosis in tumour cells
GRP78/BiP↑, In animal xenograft tumour models, BA enhanced the expression of glucose-regulated protein 78 (GRP78)
MMP2↓, reduced the levels of matrix metalloproteinases (MMPs), such as MMP-2 and MMP-9, in lung metastatic lesions of breast cancer, indicating that BA can reduce the invasiveness of breast cancer in vivo and block epithelial mesenchymal transformation (EMT
P90RSK↓,
TumCI↓,
EMT↓,
MALAT1↓, MALAT1, a lncRNA, was downregulated in hepatocellular carcinoma (HCC) cells treated with BA in vivo,
Glycolysis↓, Suppressing aerobic glycolysis of cancer cells by GRP78/β-Catenin/c-Myc signalling pathways
AMPK↑, activating AMPK signaling pathway
Sp1/3/4↓, inhibiting Sp1. BA at 20 mg/kg/d, the tumour volume and weight were significantly reduced, and the expression levels of Sp1, Sp3, and Sp4 in tumour tissues were lower than those in control mouse tissues
Hif1a↓, Suppressing the hypoxia-induced accumulation of HIF-1α and expression of HIF target genes
angioG↓, PC3: Having anti-angiogenesis effect
NF-kB↑, LNCaP, DU145 — Inducing apoptosis and NF-κB pathway
NF-kB↓, U266 — Inhibiting NF-κB pathway.
MMP↓, BA produces ROS and reduces mitochondrial membrane potential; the mitochondrial permeability transition pore of the mitochondrial membrane plays an important role in apoptosis signal transduction.
Cyt‑c↑, Mitochondria release cytochrome C and increase the levels of Caspase-9 and Caspase-3, inducing cell apoptosis.
Casp9↑,
Casp3↑,
RadioS↑, BA could be a promising drug for increasing radiosensitization in oral squamous cell carcinoma radiotherapy.
PERK↑, BA treatment increased the activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C/EBP homologous protein (CHOP) apoptosis pathway and decreased the expression of Sp1.
CHOP↑,
*toxicity↓, BA at a concentration of 50 μg/ml did not inhibit the growth of normal peripheral blood lymphocytes, indicating that the toxicity of BA was at least 1000 times less than that of doxorubicin

2738- BetA,    Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vivo, NA, NA
TumCI↓, BA inhibited invasion and migration of highly aggressive breast cancer cells.
TumCMig↓,
Glycolysis↓, Moreover, BA could suppress aerobic glycolysis of breast cancer cells presenting as a reduction of lactate production, quiescent energy phenotype transition, and downregulation of aerobic glycolysis-related proteins.
lactateProd↓, lactate production in both MDA-MB-231 and BT-549 cells was significantly reduced following BA administration
GRP78/BiP↑, (GRP78) was also identified as the molecular target of BA in inhibiting aerobic glycolysis. BA treatment led to GRP78 overexpression, and GRP78 knockdown abrogated the inhibitory effect of BA on glycolysis.
ER Stress↑, Further studies demonstrated that overexpressed GRP78 activated the endoplasmic reticulum (ER) stress sensor PERK.
PERK↑,
p‑eIF2α↑, Subsequent phosphorylation of eIF2α led to the inhibition of β-catenin expression, which resulted in the inhibition of c-Myc-mediated glycolysis.
β-catenin/ZEB1↓,
cMyc↓, These findings suggested that BA inhibited the β-catenin/c-Myc pathway by interrupting the binding between GRP78 and PERK and ultimately suppressed the glycolysis of breast cancer cells.
ROS↑, (i) the induction of cancer cell apoptosis via the mitochondrial pathway induced by the release of soluble factors or generation of reactive oxygen species (ROS)
angioG↓, (ii) the inhibition of angiogenesis [24];
Sp1/3/4↓, (iii) the degradation of transcription factor specificity protein 1 (Sp1)
DNAdam↑, (iv) the induction of DNA damage by suppressing topoisomerase I
TOP1↓,
TumMeta↓, BA Inhibits Metastasis of Highly Aggressive Breast Cancer Cells
MMP2↓, BA significantly decreased the expression of MMP-2 and MMP-9 secreted by breast cancer cells
MMP9↓,
N-cadherin↓, BA downregulated the levels of N-cadherin and vimentin as the mesenchymal markers, while increased E-cadherin which is an epithelial marker (Figure 2(c)), validating the EMT inhibition effects of BA in breast cancer cells.
Vim↓,
E-cadherin↑,
EMT↓,
LDHA↓, the levels of glycolytic enzymes, including LDHA and p-PDK1/PDK1, were all decreased in a dose-dependent manner by BA
p‑PDK1↓,
PDK1↓,
ECAR↓, extracellular acidification rate (ECAR), which reflects the glycolysis activity, was retarded following BA administration.
OCR↓, oxygen consumption rate (OCR), which is a marker of mitochondrial respiration, was also decreased simultaneously
Hif1a↓, BA could reduce prostate cancer angiogenesis via inhibiting the HIF-1α/stat3 pathway [39]
STAT3↓,

2739- BetA,    Glycolytic Switch in Response to Betulinic Acid in Non-Cancer Cells
- in-vitro, Nor, HUVECs - in-vitro, Nor, MEF
*Glycolysis↑, BA elevates the rates of cellular glucose uptake and aerobic glycolysis in mouse embryonic fibroblasts with concomitant reduction of glucose oxidation.
*GlucoseCon↑, BA increases cellular glucose uptake
*Apoptosis↓, Without eliciting signs of obvious cell death BA leads to compromised mitochondrial function, increased expression of mitochondrial uncoupling proteins (UCP) 1 and 2, and liver kinase B1 (LKB1)-dependent activation AMP-activated protein kinase.
*UCP1↓,
*AMPK↑, AMPK activation accounts for the increased glucose uptake and glycolysis which in turn are indispensable for cell viability upon BA treatment.
GLUT1↑, The expression of glucose transporter GLUT1 was elevated upon BA treatment for 16 h
mt-ROS↑, We observed increased production of mitochondrial ROS (Fig. 4A) and elevated expression of uncoupling proteins UCP1 and UCP2 in BA-treated MEF


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
ACSL1↓,1,   AMPK↑,1,   angioG↓,2,   Casp3↑,1,   Casp9↑,1,   Cav1↑,1,   ChemoSen↑,1,   CHOP↑,1,   cMyc↓,2,   CPT1A↓,1,   Cyt‑c↑,1,   DNAdam↑,1,   E-cadherin↑,1,   ECAR↓,2,   eff↑,1,   p‑eIF2α↑,1,   EMT↓,2,   ER Stress↑,1,   FAO↓,1,   FASN↓,1,   GlucoseCon↓,2,   GLUT1↑,1,   Glycolysis↓,4,   GRP78/BiP↑,2,   Hif1a↓,2,   HK2↓,1,   lactateProd↓,3,   LDHA↓,2,   MALAT1↓,1,   MMP↓,1,   MMP2↓,2,   MMP9↓,1,   N-cadherin↓,1,   NF-kB↓,2,   NF-kB↑,1,   OCR↓,2,   OXPHOS↓,1,   P90RSK↓,1,   PDK1↓,2,   p‑PDK1↓,2,   PERK↑,2,   PFK1↓,1,   PKM2↓,1,   RadioS↑,1,   ROS↑,1,   mt-ROS↑,2,   selectivity↑,2,   Sp1/3/4↓,2,   STAT3↓,2,   TOP1↓,1,   TumCI↓,2,   TumCMig↓,1,   TumCP↓,1,   TumMeta↓,1,   Vim↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 56

Results for Effect on Normal Cells:
AMPK↑,1,   Apoptosis↓,1,   GlucoseCon↑,1,   Glycolysis↑,2,   toxicity↓,2,   UCP1↓,1,  
Total Targets: 6

Scientific Paper Hit Count for: Glycolysis, Glycolysis
5 Betulinic acid
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:42  Target#:129  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page