condition found
Features: |
Betulinic acid "buh-TOO-li-nik acid" is a natural compound with antiretroviral, anti malarial, anti-inflammatory and anticancer properties. It is found in the bark of several plants, such as white birch, ber tree and rosemary, and has a complex mode of action against tumor cells. -Betulinic acid is a naturally occurring pentacyclic triterpenoid -vitro concentrations range from 1–100 µM, in vivo studies in rodents have generally used doses from 10–100 mg/kg -half-life reports vary 3-5 hrs?. BioAv -hydrophobic molecule with relatively poor water solubility. Pathways: - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ - Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : P53↑, HSP↓, Sp proteins↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓, - inhibits glycolysis ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, - inhibits Cancer Stem Cells : CSC↓, GLi1↓, β-catenin↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK↓, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Glycolysis is a metabolic pathway that converts glucose into pyruvate, producing a small amount of ATP (energy) in the process. It is a fundamental process for cellular energy production and occurs in the cytoplasm of cells. In normal cells, glycolysis is tightly regulated and is followed by aerobic respiration in the presence of oxygen, which allows for the efficient production of ATP. In cancer cells, however, glycolysis is often upregulated, even in the presence of oxygen. This phenomenon is known as the Warburg Mutations in oncogenes (like MYC) and tumor suppressor genes (like TP53) can alter metabolic pathways, promoting glycolysis and other anabolic processes that support cell growth.effect. Acidosis: The increased production of lactate from glycolysis can lead to an acidic microenvironment, which may promote tumor invasion and suppress immune responses. Glycolysis is a hallmark of malignancy transformation in solid tumor, and LDH is the key enzyme involved in glycolysis. Pathways: -GLUTs, HK2, PFK, PK, PKM2, LDH, LDHA, PI3K/AKT/mTOR, AMPK, HIF-1a, c-MYC, p53, SIRT6, HSP90α, GAPDH, HBT, PPP, Lactate Metabolism, ALDO Natural products targeting glycolytic signaling pathways https://pmc.ncbi.nlm.nih.gov/articles/PMC9631946/ Alkaloids: -Berberine, Worenine, Sinomenine, NK007, Tetrandrine, N-methylhermeanthidine chloride, Dauricine, Oxymatrine, Matrine, Cryptolepine Flavonoids: -Oroxyline A, Apigenin, Kaempferol, Quercetin, Wogonin, Baicalein, Chrysin, Genistein, Cardamonin, Phloretin, Morusin, Bavachinin, 4-O-methylalpinumisofavone, Glabridin, Icaritin, LicA, Naringin, IVT, Proanthocyanidin B2, Scutellarin, Hesperidin, Silibinin, Catechin, EGCG, EGC, Xanthohumol. Non-flavonoid phenolic compounds: Curcumin, Resveratrol, Gossypol, Tannic acid. Terpenoids: -Cantharidin, Dihydroartemisinin, Oleanolic acid, Jolkinolide B, Cynaropicrin, Ursolic Acid, Triptolie, Oridonin, Micheliolide, Betulinic Acid, Beta-escin, Limonin, Bruceine D, Prosapogenin A (PSA), Oleuropein, Dioscin. Quinones: -Thymoquinone, Lapachoi, Tan IIA, Emodine, Rhein, Shikonin, Hypericin Others: -Perillyl alcohol, HCA, Melatonin, Sulforaphane, Vitamin D3, Mycoepoxydiene, Methyl jasmonate, CK, Phsyciosporin, Gliotoxin, Graviola, Ginsenoside, Beta-Carotene. |
2740- | BetA,  |   | Effects and mechanisms of fatty acid metabolism-mediated glycolysis regulated by betulinic acid-loaded nanoliposomes in colorectal cancer |
- | in-vitro, | CRC, | HCT116 |
943- | BetA,  |   | Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway |
- | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
2729- | BetA,  |   | Betulinic acid in the treatment of tumour diseases: Application and research progress |
- | Review, | Var, | NA |
2738- | BetA,  |   | Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway |
- | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vivo, | NA, | NA |
2739- | BetA,  |   | Glycolytic Switch in Response to Betulinic Acid in Non-Cancer Cells |
- | in-vitro, | Nor, | HUVECs | - | in-vitro, | Nor, | MEF |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:42 Target#:129 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid