condition found tbRes List
BetA, Betulinic acid: Click to Expand ⟱
Features:
Betulinic acid "buh-TOO-li-nik acid" is a natural compound with antiretroviral, anti malarial, anti-inflammatory and anticancer properties. It is found in the bark of several plants, such as white birch, ber tree and rosemary, and has a complex mode of action against tumor cells.
-Betulinic acid is a naturally occurring pentacyclic triterpenoid
-vitro concentrations range from 1–100 µM, in vivo studies in rodents have generally used doses from 10–100 mg/kg
-half-life reports vary 3-5 hrs?.
BioAv -hydrophobic molecule with relatively poor water solubility.

Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, GLi1↓, β-catenin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells


AMPK, adenosine monophosphate-activated protein kinase: Click to Expand ⟱
Source:
Type:
AMPK: guardian of metabolism and mitochondrial homeostasis; Upon changes in the ATP-to-AMP ratio, AMPK is activated. (AMPK) is a key metabolic sensor that is pivotal for the maintenance of cellular energy homeostasis. It is well documented that AMPK possesses a suppressor role in the context of tumor development and progression by modulating the inflammatory and metabolic pathways.

-Activating AMPK can inhibit anabolic processes and the PI3K/Akt/mTOR pathway reducing glycolysis shifting toward Oxidative Phosphorlylation.


AMPK activators:
-metformin or AICAR
-Resveratrol: activate AMPK indirectly
-Berberine
-Quercetin: may stimulate AMPK
-EGCG: thought to activate AMPK
-Curcumin: may activate AMPK

-Ginsenosides: Some ginsenosides have been associated with AMPK activation -Beta-Lapachone: A natural naphthoquinone compound found in the bark of Tabebuia avellanedae (also known as lapacho or taheebo). It has been observed to activate AMPK in certain models.
-Alpha-Lipoic Acid (ALA): associated with AMPK activation


Scientific Papers found: Click to Expand⟱
2729- BetA,    Betulinic acid in the treatment of tumour diseases: Application and research progress
- Review, Var, NA
ChemoSen↑, Betulinic acid can increase the sensitivity of cancer cells to other chemotherapy drugs
mt-ROS↑, BA has antitumour activity, and its mechanisms of action mainly include the induction of mitochondrial oxidative stress
STAT3↓, inhibition of signal transducer and activator of transcription 3 and nuclear factor-κB signalling pathways.
NF-kB↓,
selectivity↑, A main advantage of BA and its derivatives is that they are cytotoxic to different human tumour cells, while cytotoxicity is much lower in normal cells.
*toxicity↓, It can kill cancer cells but has no obvious effect on normal cells and is also nontoxic to other organs in xenograft mice at a dose of 500 mg/kg
eff↑, BA combined with chemotherapy drugs, such as platinum and mithramycin A, can induce apoptosis in tumour cells
GRP78/BiP↑, In animal xenograft tumour models, BA enhanced the expression of glucose-regulated protein 78 (GRP78)
MMP2↓, reduced the levels of matrix metalloproteinases (MMPs), such as MMP-2 and MMP-9, in lung metastatic lesions of breast cancer, indicating that BA can reduce the invasiveness of breast cancer in vivo and block epithelial mesenchymal transformation (EMT
P90RSK↓,
TumCI↓,
EMT↓,
MALAT1↓, MALAT1, a lncRNA, was downregulated in hepatocellular carcinoma (HCC) cells treated with BA in vivo,
Glycolysis↓, Suppressing aerobic glycolysis of cancer cells by GRP78/β-Catenin/c-Myc signalling pathways
AMPK↑, activating AMPK signaling pathway
Sp1/3/4↓, inhibiting Sp1. BA at 20 mg/kg/d, the tumour volume and weight were significantly reduced, and the expression levels of Sp1, Sp3, and Sp4 in tumour tissues were lower than those in control mouse tissues
Hif1a↓, Suppressing the hypoxia-induced accumulation of HIF-1α and expression of HIF target genes
angioG↓, PC3: Having anti-angiogenesis effect
NF-kB↑, LNCaP, DU145 — Inducing apoptosis and NF-κB pathway
NF-kB↓, U266 — Inhibiting NF-κB pathway.
MMP↓, BA produces ROS and reduces mitochondrial membrane potential; the mitochondrial permeability transition pore of the mitochondrial membrane plays an important role in apoptosis signal transduction.
Cyt‑c↑, Mitochondria release cytochrome C and increase the levels of Caspase-9 and Caspase-3, inducing cell apoptosis.
Casp9↑,
Casp3↑,
RadioS↑, BA could be a promising drug for increasing radiosensitization in oral squamous cell carcinoma radiotherapy.
PERK↑, BA treatment increased the activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C/EBP homologous protein (CHOP) apoptosis pathway and decreased the expression of Sp1.
CHOP↑,
*toxicity↓, BA at a concentration of 50 μg/ml did not inhibit the growth of normal peripheral blood lymphocytes, indicating that the toxicity of BA was at least 1000 times less than that of doxorubicin

2730- BetA,    Betulinic acid induces autophagy-dependent apoptosis via Bmi-1/ROS/AMPK-mTOR-ULK1 axis in human bladder cancer cells
- in-vitro, Bladder, T24
tumCV↓, The present study showed that BA exposure significantly suppressed viability, proliferation, and migration of EJ and T24 human bladder cancer cells
TumCP↓,
TumCMig↓,
Casp↑, These effects reflected caspase 3-mediated apoptosis
TumAuto↑, BA-induced autophagy was evidenced by epifluorescence imaging of lentivirus-induced expression of mCherry-GFP-LC3B and increased expression of two autophagy-related proteins, LC3B-II and TEM.
LC3B-II↑,
p‑AMPK↑, Moreover, enhanced AMPK phosphorylation and decreased mTOR and ULK-1 phosphorylation suggested BA activates autophagy via the AMPK/mTOR/ULK1 pathway.
mTOR↓,
BMI1↓, decreased Bmi-1 expression in BA-treated T24 cell xenografts in nude mice suggested that downregulation of Bmi-1 is the underlying mechanism in BA-mediated, autophagy-dependent apoptosis.
ROS↑, BA induced ROS production dose-dependently
eff↓, Co-incubation with NAC effectively blocked ROS production (Figure 4B), rescued cell viability,

2736- BetA,  Chemo,    Multifunctional Roles of Betulinic Acid in Cancer Chemoprevention: Spotlight on JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and Non-Coding RNAs in the Inhibition of Carcinogenesis and Metastasis
- Review, Var, NA
chemoP↑, reviews about cancer chemopreventive role of betulinic acid against wide variety of cancers [18,19,20,21].
p‑STAT3↓, betulinic acid reduced the levels of p-STAT3 in tumor tissues derived from KB cells
JAK1↓, Betulinic acid exerted inhibitory effects on the constitutive phosphorylation of JAK1 and JAK2
JAK2↓,
VEGF↓, betulinic acid mediated inhibition of VEGF
EGFR↓, evaluation of betulinic acid as a next-generation EGFR inhibitor
Cyt‑c↑, release of SMAC/DIABLO and cytochrome c from mitochondria in SHEP neuroblastoma cells
Diablo↑,
AMPK↑, Betulinic acid induced activation of AMPK and consequently reduced the activation of mTOR.
mTOR↓,
Sp1/3/4↓, Betulinic acid significantly reduced the quantities of Sp1, Sp3 and Sp4 in the tissues of the tumors derived from RKO cells
DNAdam↑, Betulinic acid efficiently triggered DNA damage (γH2AX) and apoptosis (caspase-3 and p53 phosphorylation) in temozolomide-sensitive and temozolomide-resistant glioblastoma cells.
Gli1↓, Betulinic acid effectively reduced GLI1, GLI2 and PTCH1 in RMS-13 cells.
GLI2↓,
PTCH1↓,
MMP2↓, betulinic acid exerted inhibitory effects on MMP-2 and MMP-9 in HepG2 cells.
MMP9↓,
miR-21↓, Collectively, p53 increased miR-21 levels and inhibited SOD2 levels, leading to significant increase in the accumulation of ROS levels and apoptotic cell death.
SOD2↓,
ROS↑,
Apoptosis↑,

2739- BetA,    Glycolytic Switch in Response to Betulinic Acid in Non-Cancer Cells
- in-vitro, Nor, HUVECs - in-vitro, Nor, MEF
*Glycolysis↑, BA elevates the rates of cellular glucose uptake and aerobic glycolysis in mouse embryonic fibroblasts with concomitant reduction of glucose oxidation.
*GlucoseCon↑, BA increases cellular glucose uptake
*Apoptosis↓, Without eliciting signs of obvious cell death BA leads to compromised mitochondrial function, increased expression of mitochondrial uncoupling proteins (UCP) 1 and 2, and liver kinase B1 (LKB1)-dependent activation AMP-activated protein kinase.
*UCP1↓,
*AMPK↑, AMPK activation accounts for the increased glucose uptake and glycolysis which in turn are indispensable for cell viability upon BA treatment.
GLUT1↑, The expression of glucose transporter GLUT1 was elevated upon BA treatment for 16 h
mt-ROS↑, We observed increased production of mitochondrial ROS (Fig. 4A) and elevated expression of uncoupling proteins UCP1 and UCP2 in BA-treated MEF


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
AMPK↑,2,   p‑AMPK↑,1,   angioG↓,1,   Apoptosis↑,1,   BMI1↓,1,   Casp↑,1,   Casp3↑,1,   Casp9↑,1,   chemoP↑,1,   ChemoSen↑,1,   CHOP↑,1,   Cyt‑c↑,2,   Diablo↑,1,   DNAdam↑,1,   eff↓,1,   eff↑,1,   EGFR↓,1,   EMT↓,1,   Gli1↓,1,   GLI2↓,1,   GLUT1↑,1,   Glycolysis↓,1,   GRP78/BiP↑,1,   Hif1a↓,1,   JAK1↓,1,   JAK2↓,1,   LC3B-II↑,1,   MALAT1↓,1,   miR-21↓,1,   MMP↓,1,   MMP2↓,2,   MMP9↓,1,   mTOR↓,2,   NF-kB↓,2,   NF-kB↑,1,   P90RSK↓,1,   PERK↑,1,   PTCH1↓,1,   RadioS↑,1,   ROS↑,2,   mt-ROS↑,2,   selectivity↑,1,   SOD2↓,1,   Sp1/3/4↓,2,   STAT3↓,1,   p‑STAT3↓,1,   TumAuto↑,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,1,   tumCV↓,1,   VEGF↓,1,  
Total Targets: 52

Results for Effect on Normal Cells:
AMPK↑,1,   Apoptosis↓,1,   GlucoseCon↑,1,   Glycolysis↑,1,   toxicity↓,2,   UCP1↓,1,  
Total Targets: 6

Scientific Paper Hit Count for: AMPK, adenosine monophosphate-activated protein kinase
4 Betulinic acid
1 Chemotherapy
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:42  Target#:9  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page