condition found tbRes List
BetA, Betulinic acid: Click to Expand ⟱
Features:
Betulinic acid "buh-TOO-li-nik acid" is a natural compound with antiretroviral, anti malarial, anti-inflammatory and anticancer properties. It is found in the bark of several plants, such as white birch, ber tree and rosemary, and has a complex mode of action against tumor cells.
-Betulinic acid is a naturally occurring pentacyclic triterpenoid
-vitro concentrations range from 1–100 µM, in vivo studies in rodents have generally used doses from 10–100 mg/kg
-half-life reports vary 3-5 hrs?.
BioAv -hydrophobic molecule with relatively poor water solubility.

Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, GLi1↓, β-catenin↓, OCT4↓,
- Others: PI3K, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells


PI3K, Phosphatidylinositide-3-Kinases: Click to Expand ⟱
Source: HalifaxProj(inhibit) CGL-CS
Type:
Phosphatidylinositol 3-kinase (PtdIns3K or PI3K) is a family of enzymes that play a crucial role in cell signaling pathways, particularly in the regulation of cell growth, survival, and metabolism. The PI3K pathway is one of the most frequently altered pathways in human cancer. Inhibition of the PI3K pathway has been explored as a therapeutic strategy for cancer treatment. Several PI3K inhibitors have been developed and are currently being tested in clinical trials. These inhibitors can target specific components of the pathway, such as PI3K, AKT, or mTOR.

Class I phosphoinositide 3-kinase (PI3K)
Class III PtdIns3K
In contrast to the class III PtdIns3K as a positive regulator of autophagy, class I PI3K-AKT signaling has an opposing effect on the initiation of autophagy.

PI3K inhibitors include:
-Idelalisib , Copanlisib, Alpelisib
-LY294002?
-Wortmannin: potent PI3K inhibitor, has some associated toxicity.
-Quercetin:
-Curcumin
-Resveratrol
-Epigallocatechin Gallate (EGCG)


Scientific Papers found: Click to Expand⟱
2753- BetA,    Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells
- in-vitro, Cerv, HeLa
PI3K↓, BA treatment acted through downregulating a phosphatidylinositol 3-kinase (PI3K) subunit and suppressing the Akt phosphorylation at Thr308 and Ser473 after increasing the generation of intracellular reactive oxygen species
p‑Akt↓,
ROS↑,
TumCCA↑, BA induced cell cycle arrest at the G0/G1 phase, which was consistent with the cell cycle-related protein results in which BA significantly enhanced the expression of p27Kip and p21Waf1/Cip1 in HeLa cells.
p27↑,
P21↑,
mt-Apoptosis↑, mitochondrial apoptosis, as reflected by the increased expression of Bad and caspase-9
BAD↑,
Casp9↑,
MMP↓, decline in mitochondrial membrane potential.
eff↓, preincubation of the cells with glutathione (antioxidant) blocked the process of apoptosis, prevented the phosphorylation of downstream substrates.

2757- BetA,    Betulinic Acid Inhibits Glioma Progression by Inducing Ferroptosis Through the PI3K/Akt and NRF2/HO-1 Pathways
- in-vitro, GBM, U251
tumCV↓, BA reduced viability; inhibited colony formation, migration, and invasion; and triggered apoptosis.
TumCMig↓,
TumCI↓,
Apoptosis↑,
p‑PI3K↓, BA administration decreased the levels of phosphorylated PI3K and AKT.
p‑Akt↓,
Ferroptosis↑, BA-induced ferroptosis and HO-1 and NRF2 levels were increased
HO-1↑,
NRF2↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
p‑Akt↓,2,   Apoptosis↑,1,   mt-Apoptosis↑,1,   BAD↑,1,   Casp9↑,1,   eff↓,1,   Ferroptosis↑,1,   HO-1↑,1,   MMP↓,1,   NRF2↑,1,   P21↑,1,   p27↑,1,   PI3K↓,1,   p‑PI3K↓,1,   ROS↑,1,   TumCCA↑,1,   TumCI↓,1,   TumCMig↓,1,   tumCV↓,1,  
Total Targets: 19

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: PI3K, Phosphatidylinositide-3-Kinases
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:42  Target#:252  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page