condition found tbRes List
BetA, Betulinic acid: Click to Expand ⟱
Features:
Betulinic acid "buh-TOO-li-nik acid" is a natural compound with antiretroviral, anti malarial, anti-inflammatory and anticancer properties. It is found in the bark of several plants, such as white birch, ber tree and rosemary, and has a complex mode of action against tumor cells.
-Betulinic acid is a naturally occurring pentacyclic triterpenoid
-vitro concentrations range from 1–100 µM, in vivo studies in rodents have generally used doses from 10–100 mg/kg
-half-life reports vary 3-5 hrs?.
BioAv -hydrophobic molecule with relatively poor water solubility.

Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, GLi1↓, β-catenin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells


selectivity, selectivity: Click to Expand ⟱
Source:
Type:
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues.

Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance

Factors that affect selectivity:
1. Ability of Cancer cells to preferentially absorb a product/drug
-EPR-enhanced permeability and retention of cancer cells
-nanoparticle formations/carriers may target cancer cells over normal cells
-Liposomal formations. Also negatively/positively charged affects absorbtion

2. Product/drug effect may be different for normal vs cancer cells
- hypoxia
- transition metal content levels (iron/copper) change probability of fenton reaction.
- pH levels
- antiOxidant levels and defense levels

3. Bio-availability


Scientific Papers found: Click to Expand⟱
2747- BetA,    Betulinic acid, a natural compound with potent anticancer effects
- Review, Var, NA
selectivity↑, potently effective against a wide variety of cancer cells, also those derived from therapy-resistant and refractory tumors, whereas it has been found to be relatively nontoxic for healthy cells
Cyt‑c↑, induces Bax/Bak-independent cytochrome-c release.
*toxicity↓, In general, BetA is concluded to be less toxic to cells from healthy tissues.
TOP1↓, topoisomerase I/II
NF-kB↓, transcription factor NF-kB
ROS↑, Consistently, in glioma cells BetA-induced ROS generation
RadioS↑, Treatment with BetA in combination with irradiation resulted in additive growth inhibition of melanoma cells.
ChemoSen↑, BetA cooperated with anticancer drugs, doxorubicin and etoposide, to induce apoptosis and to inhibit clonogenic survival in SHEP neuroblastoma cells

2752- BetA,    Betulinic acid: a natural product with anticancer activity
- Review, Var, NA
selectivity↑, nontransformed cells of different origin, e.g., fibroblasts, melanocytes, neuronal cells and peripheral blood lymphocytes, have been reported to be much more resistant to the cytotoxic effect of BA than cancer cells
ChemoSen↑, BA was found to cooperate with various chemotherapeutic drugs, including doxorubicin, etoposide, cisplatin, taxol, and actinomycin D, to induce apoptosis and to inhibit clonogenic survival of tumor cells
RadioS↑, These reports suggest that using BetA as sensitizer in chemotherapy-, radiotherapy-, or TRAIL-based combination regimens may be a novel strategy to enhance the efficacy of anticancer therapy.
MMP↓, BA directly induces loss of mitochondrial membrane potenti
cl‑Casp3↑, BA, induced cleavage of both caspases-8 and -3 in cytosolic extracts.
Cyt‑c↑, cytochrome c, released from mitochondria undergoing BA-mediated permeability transition, activated caspase-3 but not caspase-8 in a cell-free system.
ROS↑, Cleavage of caspases-3 and -8 was preceded by disturbance of mitochondrial membrane potential and by generation of reactive oxygen species (ROS).
NF-kB↑, BA is a potent activator of NF-kB in a variety of tumor cell lines.
TOP1↓, BA blocks the catalytic activity of topoisomerase I by abrogating the inter- action of the enzyme and the DNA substrate

2718- BetA,    The anti-cancer effect of betulinic acid in u937 human leukemia cells is mediated through ROS-dependent cell cycle arrest and apoptosis
- in-vitro, AML, U937
TumCCA↑, BA exerted a significant cytotoxic effect on U937 cells through blocking cell cycle arrest at the G2/M phase and inducing apoptosis, and that the intracellular reactive oxygen species (ROS) levels increased after treatment with BA.
Apoptosis↑,
i-ROS↑,
cycA1↓, down-regulation of cyclin A and cyclin B1, and up-regulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1 revealed the G2/M phase arrest mechanism of BA.
CycB↓,
P21↑,
Cyt‑c↑, BA induced the cytosolic release of cytochrome c by reducing the mitochondrial membrane potential with an increasing Bax/Bcl-2 expression ratio.
MMP↓,
Bax:Bcl2↑,
Casp9↑, BA also increased the activity of caspase-9 and -3, and subsequent degradation of the poly (ADP-ribose) polymerase.
Casp3↑,
PARP↓,
eff↓, However, quenching of ROS by N-acetyl-cysteine, an ROS scavenger, markedly abolished BA-induced G2/M arrest and apoptosis, indicating that the generation of ROS plays a key role in inhibiting the proliferation of U937 cells by BA treatment.
*antiOx↑, Accumulated evidence demonstrates that BA possesses various biological activities, including antioxidant, anti-inflammatory, hepatoprotective, and anti-tumor effects
*Inflam↓,
*hepatoP↑,
selectivity↑, BA are complex and depends on the type of cancer cells, without causing toxicity toward normal cells
NF-kB↓, Shen et al. (2019) recently reported that the suppression of the nuclear factor-kappa B pathway increased downstream oxidant effectors, thereby promoting the generation of reactive oxygen species (ROS) in BA-stimulated multiple myeloma cells.
*ROS↓, Although BA is known to have antioxidant activity that blocks the accumulation of ROS due to oxidative stress in normal cells (Cheng et al. 2019;

2719- BetA,    Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential
- in-vitro, CRC, T24 - in-vitro, Bladder, UMUC3 - in-vitro, Bladder, 5637
TumCD↑, BA induced cell death in bladder cancer cells and that are accompanied by apoptosis, necrosis, and cell cycle arrest.
Apoptosis↑,
TumCCA↑,
CycB↓, BA decreased the expression of cell cycle regulators, such as cyclin B1, cyclin A, cyclin-dependent kinase (Cdk) 2, cell division cycle (Cdc) 2, and Cdc25c
cycA1↓,
CDK2↓,
CDC25↓,
mtDam↑, BA-induced apoptosis was associated with mitochondrial dysfunction that is caused by loss of mitochondrial membrane potential, which led to the activation of mitochondrial-mediated intrinsic pathway.
BAX↑, BA up-regulated the expression of Bcl-2-accociated X protein (Bax) and cleaved poly-ADP ribose polymerase (PARP), and subsequently activated caspase-3, -8, and -9.
cl‑PARP↑,
Casp3↑,
Casp8↑,
Casp9↑,
Snail↓, decreased the expression of Snail and Slug in T24 and 5637 cells, and matrix metalloproteinase (MMP)-9 in UMUC-3 cells.
Slug↓,
MMP9↓,
selectivity↑, Among the bladder cancer cell lines, 5637 cells were much more sensitive to BA than T24 or UMUC-3 cells under the same conditions. However, BA does not affect cell growth in normal cell lines including RAW 264.7
MMP↓, BA Induces Loss of Mitochondrial Membrane Potential (MMP, ΔΨm) in Human Bladder Cancer Cells
ROS∅, As a result, we found that BA did not affect intracellular ROS levels in all three bladder cancer cells. In addition, BA-induced cell viability inhibition was not restored by NAC pre-treatment
TumCMig↓, BA Decreases Migration and Invasion of Human Bladder Cancer Cells
TumCI↓,

943- BetA,    Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
Glycolysis↓,
lactateProd↓,
GlucoseCon↓,
ECAR↓,
cMyc↓,
LDHA↓,
p‑PDK1↓,
PDK1↓,
Cav1↑, Cav-1) as one of key targets of BA in suppressing aerobic glycolysis, as BA administration resulted in Cav-1 upregulation
*Glycolysis↑, BA could lead to increased glycolysis in mouse embryonic fibroblasts by activating LKB1/AMPK pathway, whereas we found that BA inhibited aerobic glycolysis in breast cancer cells by modulating Cav-1/NF-κB/c-Myc signaling
selectivity↑,
OCR↓, OCR parameters including the basal respiration, maximal respiration and spare respiratory capacity were also simultaneously inhibited
OXPHOS↓, implying that the activity of mitochondrial oxidative phosphorylation (OXPHOS) chain was also suppressed by BA

2729- BetA,    Betulinic acid in the treatment of tumour diseases: Application and research progress
- Review, Var, NA
ChemoSen↑, Betulinic acid can increase the sensitivity of cancer cells to other chemotherapy drugs
mt-ROS↑, BA has antitumour activity, and its mechanisms of action mainly include the induction of mitochondrial oxidative stress
STAT3↓, inhibition of signal transducer and activator of transcription 3 and nuclear factor-κB signalling pathways.
NF-kB↓,
selectivity↑, A main advantage of BA and its derivatives is that they are cytotoxic to different human tumour cells, while cytotoxicity is much lower in normal cells.
*toxicity↓, It can kill cancer cells but has no obvious effect on normal cells and is also nontoxic to other organs in xenograft mice at a dose of 500 mg/kg
eff↑, BA combined with chemotherapy drugs, such as platinum and mithramycin A, can induce apoptosis in tumour cells
GRP78/BiP↑, In animal xenograft tumour models, BA enhanced the expression of glucose-regulated protein 78 (GRP78)
MMP2↓, reduced the levels of matrix metalloproteinases (MMPs), such as MMP-2 and MMP-9, in lung metastatic lesions of breast cancer, indicating that BA can reduce the invasiveness of breast cancer in vivo and block epithelial mesenchymal transformation (EMT
P90RSK↓,
TumCI↓,
EMT↓,
MALAT1↓, MALAT1, a lncRNA, was downregulated in hepatocellular carcinoma (HCC) cells treated with BA in vivo,
Glycolysis↓, Suppressing aerobic glycolysis of cancer cells by GRP78/β-Catenin/c-Myc signalling pathways
AMPK↑, activating AMPK signaling pathway
Sp1/3/4↓, inhibiting Sp1. BA at 20 mg/kg/d, the tumour volume and weight were significantly reduced, and the expression levels of Sp1, Sp3, and Sp4 in tumour tissues were lower than those in control mouse tissues
Hif1a↓, Suppressing the hypoxia-induced accumulation of HIF-1α and expression of HIF target genes
angioG↓, PC3: Having anti-angiogenesis effect
NF-kB↑, LNCaP, DU145 — Inducing apoptosis and NF-κB pathway
NF-kB↓, U266 — Inhibiting NF-κB pathway.
MMP↓, BA produces ROS and reduces mitochondrial membrane potential; the mitochondrial permeability transition pore of the mitochondrial membrane plays an important role in apoptosis signal transduction.
Cyt‑c↑, Mitochondria release cytochrome C and increase the levels of Caspase-9 and Caspase-3, inducing cell apoptosis.
Casp9↑,
Casp3↑,
RadioS↑, BA could be a promising drug for increasing radiosensitization in oral squamous cell carcinoma radiotherapy.
PERK↑, BA treatment increased the activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C/EBP homologous protein (CHOP) apoptosis pathway and decreased the expression of Sp1.
CHOP↑,
*toxicity↓, BA at a concentration of 50 μg/ml did not inhibit the growth of normal peripheral blood lymphocytes, indicating that the toxicity of BA was at least 1000 times less than that of doxorubicin

2732- BetA,  Chemo,    Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
ChemoSen↑, Here in, we found that BA has synergistic effects with taxol to induce breast cancer cells G2/M checkpoint arrest and apoptosis induction,
selectivity↑, but had little cytotoxicity effects on normal mammary epithelial cells.
GRP78/BiP↑, identified glucose-regulated protein 78 (GRP78) as the direct interacting target of BA.
ER Stress↑, BA administration significantly elevated GRP78-mediated endoplasmic reticulum (ER) stress and resulted in the activation of protein kinase R-like ER kinase (PERK)/eukaryotic initiation factor 2a/CCAAT/enhancer-binding protein homologous protein apopt
PERK↑,
Ca+2↑, We found that BA significantly elevated intracellular free calcium concentration
Cyt‑c↑, increased Cytochrome c and Bax, and the downregulation of Bcl-2
BAX↑,
Bcl-2↓,

2735- BetA,    Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications
- Review, Var, NA
mt-Apoptosis↑, BA and analogues (BAs) have been known to exhibit potential antitumor action via provoking the mitochondrial pathway of apoptosis
Casp↑, cytosolic caspase activation
p38↑, inhibition of pro-apoptotic p38, MAPK and SAP/JNK kinases [8],
MAPK↓,
JNK↓,
VEGF↓, decreased expression of pro-apoptotic proteins and vascular endothelial growth factor (VEGF)
AIF↑, BA was recognized to trigger the process of apoptosis in human metastatic melanoma cells (Me-45) by releasing apoptosis inducing factor (AIF) and cytochrome c (Cyt C) through mitochondrial membrane
Cyt‑c↑,
ROS↑, BA also stimulates the increased production of reactive oxygen species (ROS) that is considered a stress factor involved in initiating mitochondrial membrane permeabilization
Ca+2↑, Moreover, the calcium overload and thereby ATP depletion are other stress factors causing enhanced inner mitochondrial membrane permeability via nonspecific pores formation
ATP↓,
NF-kB↓, BA has also known to be involved in activation of nuclear factor kappa B (NF-κB) that is responsible for apoptosis induction in variety of cancer cells
ATF3↓, According to Zhang et al. [14], BA stimulates apoptosis through the suppression of cyclic AMP-dependent transcription factor ATF-3 and NF-κB pathways and downregulation of p53 gene.
TOP1↓, inhibition of topoisomerases
VEGF↓, ecreased expression of vascular endothelial growth (VEGF) and the anti-apoptotic protein surviving in LNCaP prostate cancer cells.
survivin↓,
Sp1/3/4↓, selective proteasome-dependent targeted degradation of transcription factors specificity proteins (Sp1, Sp3, and Sp4), which generally regulate VEGF and survivin expression and highly over-expressed in tumor conditions
MMP↓, perturbed mitochondrial membrane potential
ChemoSen↑, BA can support as sensitizer in combination therapy to enhance the anticancer effects with minimum side effects.
selectivity↑, Normal human fibroblasts [41], peripheral blood lymphoblasts [41], melanocytes [32] and astrocytes [30] were found to be resistant to BA in vitro
BioAv↓, The clinical use of BA is seriously challenging due to high hydrophobicity which subsequently causes poor bioavailability
BioAv↑, A BA-loaded oil-in-water nanoemulsion was developed using phospholipase-catalyzed modified phosphatidylcholine as emulsifier in an ultrasonicator [120].
BioAv↑, Aqueous solubility of BA may also be increased through grinding with hydrophilic polymers (polyethylene glycol, polyvinylpyrrolidone, arabinogalactan) [121,122].
BioAv↑, Subsequently, for further improvement in biocompatibility, a technique of nanotube coating was employed with four biopolymers i.e. polyethylene glycol (PEG), chitosan, tween 20 and tween 80.
BioAv↑, Similarly, BA-coated silver nanoparticles displayed an improved antiproliferative and antimigratory activity, particularly against melanoma cells (A375: murine melanoma cells)


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 8

Results for Effect on Cancer/Diseased Cells:
AIF↑,1,   AMPK↑,1,   angioG↓,1,   Apoptosis↑,2,   mt-Apoptosis↑,1,   ATF3↓,1,   ATP↓,1,   BAX↑,2,   Bax:Bcl2↑,1,   Bcl-2↓,1,   BioAv↓,1,   BioAv↑,4,   Ca+2↑,2,   Casp↑,1,   Casp3↑,3,   cl‑Casp3↑,1,   Casp8↑,1,   Casp9↑,3,   Cav1↑,1,   CDC25↓,1,   CDK2↓,1,   ChemoSen↑,5,   CHOP↑,1,   cMyc↓,1,   cycA1↓,2,   CycB↓,2,   Cyt‑c↑,6,   ECAR↓,1,   eff↓,1,   eff↑,1,   EMT↓,1,   ER Stress↑,1,   GlucoseCon↓,1,   Glycolysis↓,2,   GRP78/BiP↑,2,   Hif1a↓,1,   JNK↓,1,   lactateProd↓,1,   LDHA↓,1,   MALAT1↓,1,   MAPK↓,1,   MMP↓,5,   MMP2↓,1,   MMP9↓,1,   mtDam↑,1,   NF-kB↓,5,   NF-kB↑,2,   OCR↓,1,   OXPHOS↓,1,   P21↑,1,   p38↑,1,   P90RSK↓,1,   PARP↓,1,   cl‑PARP↑,1,   PDK1↓,1,   p‑PDK1↓,1,   PERK↑,2,   RadioS↑,3,   ROS↑,3,   ROS∅,1,   i-ROS↑,1,   mt-ROS↑,1,   selectivity↑,8,   Slug↓,1,   Snail↓,1,   Sp1/3/4↓,2,   STAT3↓,1,   survivin↓,1,   TOP1↓,3,   TumCCA↑,2,   TumCD↑,1,   TumCI↓,2,   TumCMig↓,1,   VEGF↓,2,  
Total Targets: 74

Results for Effect on Normal Cells:
antiOx↑,1,   Glycolysis↑,1,   hepatoP↑,1,   Inflam↓,1,   ROS↓,1,   toxicity↓,3,  
Total Targets: 6

Scientific Paper Hit Count for: selectivity, selectivity
8 Betulinic acid
1 Chemotherapy
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:42  Target#:1110  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page